L]
universite
PARIS-SACLAY

Bases de Données Avancées
Partie 1: SQL (Structured Query Language) - Rappel

Thomas Gerald
January 14, 2026

Laboratoire Interdisciplinaire des Sciences du Numérique - LISN, CNRS
thomas.geralda@lisn.upsaclay.fr

Le cours

Partie 1: SQL (Structured Query Language)
- Le SQL c'est quoi ?
- Définir une relation avec SQL
- Les requétes SQL

Structured Query Language (SQL)

SQL, c'est quoi ?

Un langage d'interaction avec les bases de données relationnelles

— Originellement développés par IBM (projets SEQUEL-XRM et System-R, 1974-1977)

— Le langage le plus utilisé pour l'interaction avec des bases de données relationnelles
— Interaction avec des données tabulaires (données sous forme de table)

2/74

Structured Query Language (SQL) : A quel Niveau

On ne s'intéresse pas au stockage des données mais plutdt a un niveau conceptuel des
données (Niveau Logique)!

Structured Query Language (SQL) : A quel Niveau

On ne s'intéresse pas au stockage des données mais plutdt a un niveau conceptuel des

données (Niveau Logique)!
Niveau externe

* Vues (non stocké dans le niveau logique)
« Applications/gestion utilisateurs

Niveau Logique

* Le modéle de données/description
« Abstraction par le langage (SQL)

Au niveau Logique

— On ne s'intéresse pas a la structure de stockage !!!

Structured Query Language (SQL) : Les fonctionalités

Différentes parties du langage

- La définition des données (Data definition Langage - DDL) Un sous ensemble pour la
création, la suppression et la modification des définitions des tables et des vues

474

Structured Query Language (SQL) : Les fonctionalités

Différentes parties du langage

- La définition des données (Data definition Langage - DDL) Un sous ensemble pour la
création, la suppression et la modification des définitions des tables et des vues

- Manipulation des données (Data Manipulation Language - DML) Un sous ensemble
du langage permettant de manipuler les données en autorisant l'insertion (INSERT),
la suppression (DELETE), la modification (UPDATE)

474

Structured Query Language (SQL) : Les fonctionalités

Différentes parties du langage

- La définition des données (Data definition Langage - DDL) Un sous ensemble pour la
création, la suppression et la modification des définitions des tables et des vues

- Manipulation des données (Data Manipulation Language - DML) Un sous ensemble
du langage permettant de manipuler les données en autorisant l'insertion (INSERT),
la suppression (DELETE), la modification (UPDATE)

- La sécurité des données Controle de l'acces des données (utilisateurs, etc...)

474

Structured Query Language (SQL) : Les fonctionalités

Différentes parties du langage

- La définition des données (Data definition Langage - DDL) Un sous ensemble pour la
création, la suppression et la modification des définitions des tables et des vues

- Manipulation des données (Data Manipulation Language - DML) Un sous ensemble
du langage permettant de manipuler les données en autorisant l'insertion (INSERT),
la suppression (DELETE), la modification (UPDATE)

- La sécurité des données Controle de l'acces des données (utilisateurs, etc...)
- Gestion des transactions Des commandes explicites pour controler les transactions

474

Structured Query Language (SQL) : Les fonctionalités

Différentes parties du langage

- La définition des données (Data definition Langage - DDL) Un sous ensemble pour la
création, la suppression et la modification des définitions des tables et des vues

- Manipulation des données (Data Manipulation Language - DML) Un sous ensemble
du langage permettant de manipuler les données en autorisant l'insertion (INSERT),
la suppression (DELETE), la modification (UPDATE)

- La sécurité des données Controle de l'acces des données (utilisateurs, etc...)
- Gestion des transactions Des commandes explicites pour controler les transactions

474

Structured Query Language (SQL) : Les tables

Tables et SQL

Une table SQL est un objet (une abstraction) qui contient les enregistrements d'une
relation.

\ etu |

nom prenom mail . .)
Zeblouse Agathe az@ ™ - Le nom de la relation : etu (pour étudiant)

Huai odile oh@***** _
Peuplu Jean ip@*re* - Les champs/colonnes : nom, prenom, mail
Hoch Paul hp@* . .

ocnen o Pe - Un enregistrement : Une ligne de la table

Structured Query Language (SQL) : Identifiant d’une ligne

etu

nom prenom mail
Zeblouse Agathe az@*
Huai Odile oh@*****
Peuplu Jean Jp@*FFF*
Hochon Paul hp@*****

Chaque colonne a un identifiant unique
- automatiquement définit :

- ROWID dans oracle — Un entier unique associé a chaque
ligne
- ctid dans Postgres — Un couple d’entier (page, numéro
d’entrée)
- définit par le créateur de la base de données

- Une clef primaire — Un identifiant unique correspondant a

une colonne ou un couple de colonnes définis lors de la
création du schéma

— Bien souvent un index est automatiquement crée sur la clef primaire pour accélérer la

recherche.

Structured Query Language (SQL) : Notation

Etu |
nom prenom mail Quelles sont les clefs primaires possibles ?
Zeblouse Agathe az@*****
Huai Odile oh@*****
Peuplu Jean Jp@***F**
Hochon Paul hp@*****

7/74

Structured Query Language (SQL) : Notation

Etu |
nom prenom mail Quelles sont les clefs primaires possibles ?
Zeblouse Agathe az@*****
Huai Odile oh@***** Etu(nom: str, prenom: str, mail: str)
Peuplu Jean jp@*r***
Hochon Paul hp@*****

7/74

Structured Query Language (SQL) : Notation

Etu
nom prenom mail
Zeblouse Agathe az@* >
Huai Odile oh@*****
Peuplu Jean Jp@***F**
Hochon Paul hp@*****

7/74

Quelles sont les clefs primaires possibles ?

Etu(nom: str, prenom: str, mail: str)
— Clef primaire sur le champs mail de type str (chaine de caractéres)

Structured Query Language (SQL) : Notation

Etu |
nom prenom mail Quelles sont les clefs primaires possibles ?
Zeblouse Agathe az@*****
Huai Odile oh@*** Etu(nom: str, prenom: str, mail: str)
Peuplu Jean i@ —s Clef primaire sur le champs mail de type str (chaine de caractéres)
Hochon Paul hp@*****
Etu(nom: str, prenom: str, mail: str)

7/74

Structured Query Language (SQL) : Notation

Etu |
nom prenom mail Quelles sont les clefs primaires possibles ?
Zeblouse Agathe az@*****
Huai Odile oh@*** Etu(nom: str, prenom: str, mail: str)
Peuplu Jean i@ —s Clef primaire sur le champs mail de type str (chaine de caractéres)
Hochon Paul hp@*****
Etu(nom: str, prenom: str, mail: str)

— Clef primaire sur le champs nom et prenom de type (str, str) (tuple)

7/74

Structured Query Language (SQL) : Notation

Etu |
nom prenom mail Quelles sont les clefs primaires possibles ?
Zeblouse Agathe az@*****
Huai Odile oh@*** Etu(nom: str, prenom: str, mail: str)
Peuplu Jean i@ —s Clef primaire sur le champs mail de type str (chaine de caractéres)
Hochon Paul hp@*****
Etu(nom: str, prenom: str, mail: str)

— Clef primaire sur le champs nom et prenom de type (str, str) (tuple)

Utilisation de chaine de caractéres pour les clefs primaires?
— souvent plus volumineux
—

7/74

Structured Query Language (SQL) : Notation

Etu |

nom prenom mail Quelles sont les clefs primaires possibles ?
Zeblouse Agathe az@*****

Huai Odile oh@***** Etu(nom: str, prenom: str, mail: str)

Peuplu Jean Jp@***F**

— Clef primaire sur le champs mail de type str (chaine de caractéeres
Hochon Paul hp@***** P P P ()

Etu(nom: str, prenom: str, mail: str)
— Clef primaire sur le champs nom et prenom de type (str, str) (tuple)

Utilisation de chaine de caractéres pour les clefs primaires?
— souvent plus volumineux
— .. On préfére dédier un champs numeérique pour les clefs primaires (mais ce n'est pas

une obligation)

7/74

Structured Query Language (SQL) : Notation

[Etu
eid nom prenom mail
1 Zeblouse Agathe az@*
2 Huai Odile oh@*****
3 Peuplu Jean jp@*****
4 Hochon Paul hp@*****

Quelles sont les clefs primaires possibles ?

Etu(eid: int,nom: str, prenom: str, mail: str)
— Clef primaire sur le champs mail de type str (chaine de caractéres)

Etu(eid: int, nom: str, prenom: str, mail: str)
— Clef primaire sur le champs nom et prenom de type (str, str) (tuple)

Etu(eid: int, nom: str, prenom: str, mail: str)
— Clef primaire sur le champs eid de type int

Le Language de Définition des
Données (LDD)

Structured Query Language (SQL) : Définition des données

On utilise le Langage de définition des données, pour définir le schéma des relations

- CREATE : Création du schéma de la relation
- ALTER : Modification du schéma de la relation

- DROP : Suppression d'une relation

Structured Query Language (SQL) : Création de relation

On souhaite créer la table etu avec le schéma ci-dessous :

Etu(eid: int, nom: str, prenom: str, mail: str)

Comment faire ?

10/74

Structured Query Language (SQL) : Création de relation

On souhaite créer la table etu avec le schéma ci-dessous :

CREATE TABLE -- nom de la table
s]) " INTEGER, -- un entier
Etu(eid: int, nom: str, prenom: str, mail: str) VARCHAR e G
. VARCHAR
Comment faire ? VARCHAR

10/74

Structured Query Language (SQL) : Création de relation

On souhaite créer la table etu avec le schéma ci-dessous :

CREATE TABLE -- nom de la table
s]) " INTEGER, -- un entier
Etu(eid: int, nom: str, prenom: str, mail: str) VARCHAR e G
. VARCHAR
Comment faire ? VARCHAR

Et pour spécifier la clef primaire ?

10/74

Structured Query Language (SQL) : Création de relation

On souhaite créer la table etu avec le schéma ci-dessous :

CREATE TABLE -- nom de la table
s]) " INTEGER, -- un entier
Etu(eid: int, nom: str, prenom: str, mail: str) VARCHAR e G
. VARCHAR
Comment faire ? VARCHAR

Et pour spécifier la clef primaire ? — Ajouter une contrainte

10/74

Structured Query Language (SQL) : Ajout d’une clef primaire

On peut spécifier la clef primaire, en ajoutant une contrainte:
— Au moment de la définition:

CONSTRAINT object_key_contraint PRIMARY KEY (x)
4 { 4 4
Ajout d'une contrainte Le nom de la contrainte le type de contrainte le champ
CREATE TABLE -- nom de la table
INTEGER, -- un entier
VARCHAR -- une chaine de caractéres
VARCHAR
VARCHAR
CONSTRAINT PRIMARY KEY -- contrainte de clef primaire sur

-- le couple (nom,prenom) nommé pk_etu

/74

Structured Query Language (SQL) : Ajout d’une clef primaire

Dans la suite on va plutot considérer le schéma suivant pour la relation etu

Etu(eid: int, nom: str, prenom: str, mail: str)

CREATE TABLE -- nom de la table
INTEGER, -- un entier
VARCHAR -- une chaine de caractéres
VARCHAR
VARCHAR
CONSTRAINT PRIMARY KEY -- contrainte de clef primaire sur eid

12/74

Structured Query Language (SQL) : Clefs étrangére

On considére deux nouvelles relations définit par:

— Cours(cid: int, titre: str)
— Eval(nid: int, etu_id: int, cours_id: integer, note: float)

ol le champ etu_id fait référence a la clef primaire de la table Etu :

- Un étudiant peut avoir plusieurs notes

- Si on ajoute un enregistrement dans eval alors la valeur etu_id doit exister dans
Etu (eid existant)

Il s'agit du concept de clef étrangére (Notons que cours pourrait aussi étre une clefs
étrangére sur une table)

13/74

Structured Query Language (SQL) : Clefs étrangéres

On peut spécifier la clef étrangére, en ajoutant une contrainte:
— Au moment de la définition:

CONSTRAINT key_contraint FOREIGN KEY (x) REFERENCES table(y)
A 1 1 1
nom contrainte type contrainte le champ sur quoi
CREATE TABLE -- nom de la table
INTEGER, -- un entier
INTEGER, -- une chaine de caracteres
INTEGER
FLOAT
CONSTRAINT PRIMARY KEY -- contrainte de clef primaire
CONSTRAINT FOREIGN KEY

A Pour la clef étrangére, le champ référencé doit étre unique

— eid doit étre unique dans etu

14/74

Structured Query Language (SQL) : autres contraintes

On peut contraindre certains champs a certaines valeurs, unicité...
Si l'on considére les relations créées précédemment

- Etu(eid: int, nom: str, prenom: str, mail: str)
- Cours(cid: int, titre: str)
- Eval(nid: int, etu_id: int, cours_id: int, note; float)

15/74

Structured Query Language (SQL) : autres contraintes

On peut contraindre certains champs a certaines valeurs, unicité...
Si l'on considére les relations créées précédemment

- Etu(eid: int, nom: str, prenom: str, mail: str)
- Cours(cid: int, titre: str)
- Eval(nid: int, etu_id: int, cours_id: int, note; float)

Quelles contraintes vous semblent légitimes pour la relation Eval ?

15/74

Structured Query Language (SQL) : autres contraintes

On peut contraindre certains champs a certaines valeurs, unicité...
Si l'on considére les relations créées précédemment

- Etu(eid: int, nom: str, prenom: str, mail: str)
- Cours(cid: int, titre: str)
- Eval(nid: int, etu_id: int, cours_id: int, note; float)

Quelles contraintes vous semblent légitimes pour la relation Eval ?

- Clef étrangére sur cours_id
- Une contrainte d’'unicité sur le couple cours/étudiant (si une note par cours)

- Une contrainte sur la valeur note (entre 0 et 20 par exemple)

Notons que le couple cours_id, etu_id pourrait étre une clef primaire

15/74

Structured Query Language (SQL) : Autres contraintes

- Clef étrangére sur cours_id
- Une contrainte d’unicité sur le couple cours/étudiant (si une note par cours)
- Une contrainte sur la valeur note (entre 0 et 20 par exemple)

- Pas de valeur nulles sur note (pas forcément)

CREATE TABLE -- nom de la table
INTEGER, -- un entier
INTEGER, -- une chaine de caractére
INTEGER
FLOAT
CONSTRAINT PRIMARY KEY -- contrainte de clef primaire
CONSTRAINT FOREIGN KEY
CONSTRAINT FOREIGN KEY
CONSTRAINT UNIQUE
CONSTRAINT CHECK AND
CONSTRAINT CHECK NOT NULL

16/74

Structured Query Language (SQL) : Ordre de création des tables

LN}

< public

£ note
nid

/2 etu_id

P cours_id

f note

LN
< public
5 etu

eid
f nom
B prenom

g mail

(N
< public
£ cours

cid

f titre

Dans quel ordre ?

- Etu, Eval, Cours

Structured Query Language (SQL) : Ordre de création des tables

LN}

< public

£ note
nid

/2 etu_id

P cours_id

f note

LN
< public
5 etu

eid
f nom
B prenom

g mail

(N
< public
£ cours

cid

f titre

Dans quel ordre ?

- Etu, Eval, Cours ©

Structured Query Language (SQL) : Ordre de création des tables

LN}

< public

£ note
nid

/2 etu_id

P cours_id

f note

LN
< public
5 etu

eid
f nom
B prenom

g mail

(N
< public
£ cours

cid

f titre

Dans quel ordre ?

- Etu, Eval, Cours ©
- Etu, Cours, Eval

Structured Query Language (SQL) : Ordre de création des tables

LN}

< public

£ note
nid

/2 etu_id

P cours_id

f note

LN
< public
5 etu

eid
f nom
B prenom

g mail

(N
< public
£ cours

cid

f titre

Dans quel ordre ?

- Etu, Eval, Cours ©
- Etu, Cours, Eval @

Structured Query Language (SQL) : Ordre de création des tables

LN}

< public

£ note
nid

/2 etu_id

P cours_id

f note

LN
< public
5 etu

eid
f nom
B prenom

g mail

(N
< public
£ cours

cid

f titre

Dans quel ordre ?
- Etu, Eval, Cours ©
- Etu, Cours, Eval @

- Eval, Cours, Etu

Structured Query Language (SQL) : Ordre de création des tables

LN}

< public

£ note
nid

/2 etu_id

P cours_id

f note

LN
< public
5 etu

eid
f nom
B prenom

g mail

(N
< public
£ cours

cid

f titre

Dans quel ordre ?
- Etu, Eval, Cours ©@
- Etu, Cours, Eval @
- Eval, Cours, Etu ©

Structured Query Language (SQL) : Ordre de création des tables

LN

<& public

£ etu

cia i

. Dans quel ordre ?

g = - Etu, Eval, Cours ©
= - Etu, Cours, Eval @
@ pubic - Eval, Cours, Etu @
£ note

nid - Eval, Etu, Cours
P etuid D —
42 cours_id
f note
&
< public
3 cours

cid

f titre

Structured Query Language (SQL) : Ordre de création des tables

LN

& public

9 etu

” -+

. Dans quel ordre ?

g = - Etu, Eval, Cours ©
= - Etu, Cours, Eval @
@ pubic - Eval, Cours, Etu @
£ note

nid . EVa'., EtU, Cours 0
P etuid D —
2 cours_id
f note
&
<& public
5 cours

cid

f titre

Structured Query Language (SQL) : Ordre de création des tables

N3

< public

£ etu

eid _|k

B nom Dans quel ordre ?

ﬁ pm,m - Etu, Eval, Cours ©
® - Etu, Cours, Eval @
& publie - Eval, Cours, Etu ©
£ note

i - Eval, Etu, Cours @
/2 etu_id S
£ cours.d - Cours, Etu, Eval
f note
(N3
< public
£ cours

cid

f titre

Structured Query Language (SQL) : Ordre de création des tables

LN

< public

£ etu

eid _|k

B nom Dans quel ordre ?

g o - Etu, Eval, Cours ©
© - Etu, Cours, Eval @
& purle - Eval, Cours, Etu @
£ note

i - Eval, Etu, Cours ©@
/2 etu_id S
£ cours.d - Cours, Etu, Eval @
f note

&

< public

£ cours

cid

f titre

Structured Query Language (SQL) : Ordre de création des tables

LN

< public

£ etu

eid _|k

8 rom Dans quel ordre ?

ﬁ pm,m - Etu, Eval, Cours ©
© - Etu, Cours, Eval @
& purle - Eval, Cours, Etu @
£ note

nid - Eval, Etu, Cours @
/2 etu_id S
£ cours.d - Cours, Etu, Eval @
7 roe - Cours, Eval, Etu

©

< public

£ cours

cid

f titre

Structured Query Language (SQL) : Ordre de création des tables

LN

& public

9 etu

” -+

. Dans quel ordre ?

g = - Etu, Eval, Cours ©
= - Etu, Cours, Eval @
@ pubic - Eval, Cours, Etu @
£ note

nid . EVa'., EtU, Cours 0
/2 etu_id D —
4>ld + Cours, Etu, Eval @
B note - Cours, Eval, Etu @

&

& public

5 cours

cid

f titre

Structured Query Language (SQL) : Ordre de création des tables

LN}
< public
£ note

nid
/2 etu_id
P cours_id

f note

LN
< public
5 etu

eid
f nom
B prenom

g mail

(N
< public
£ cours

cid

f titre

Dans quel ordre ?
- Etu, Eval, Cours ©@
- Etu, Cours, Eval @
- Eval, Cours, Etu ©
- Eval, Etu, Cours ©
- Cours, Etu, Eval @
- Cours, Eval, Etu ©

CREATE TABLE

-- plusieurs requéte -> ';'

CREATE TABLE

CREATE TABLE

’

Structured Query Language (SQL) : Ordre de création des tables

LN}

< public

£ note
nid

/2 etu_id

P cours_id

f note

LN
< public
5 etu

eid
f nom
B prenom

g mail

(N
< public
£ cours

cid

f titre

Dans quel ordre ?

CREATE TABLE
- Etu, Eval, Cours ©

. -- plusieurs requéte -> ';'
Etu, Cours, Eval @ CREATE TABLE

- Eval, Cours, Etu ©

- Eval, Etu, Cours © CREATE TABLE

- Cours, Etu, Eval @
- Cours, Eval, Etu ©

— Ne pas créer la table si ses dépendances n’existent pas
encore !

Structured Query Language (SQL) : Valeurs par défaut et incrémentation

La contrainte DEFAULT
On peut spécifier des valeurs par défaut:

DEFAULT

Par exemple si la note par défaut est 0 pour
la relation Eval:

CREATE TABLE

FLOAT DEFAULT

18/74

Structured Query Language (SQL) : Valeurs par défaut et incrémentation

La contrainte DEFAULT
On peut spécifier des valeurs par défaut:

DEFAULT

Par exemple si la note par défaut est 0 pour
la relation Eval:

CREATE TABLE

FLOAT DEFAULT

Le type SERIAL

Associer un compteur a une colonne

Par exemple si on souhaite que la valeur de
nid s'incrémente dans note:

CREATE TABLE

A Il s'agit de la méthode pour postgresSQL seulement

18/74

Structured Query Language (SQL) : Modification avec ALTER

Le mots clef ALTER

Il permet de modifier le schéma d'une relation existante, c'est a dire

- Ajouter/modifier/supprimer un champs
- Ajouter/modifier/supprimer une contrainte

- etc..

On commencera toujours par

ALTER TABLE

19/74

Structured Query Language (SQL) :

Suppression d'une colonne

Modification du type d’une colonne

Ajouter une contrainte de clef
primaire

Ajout d'une contrainte sur la valeur
d'une colonne

20/74

Modification avec ALTER (exemples)

ALTER TABLE
DROP COLUMN

ALTER TABLE
ALTER COLUMN

ALTER TABLE
ADD CONSTRAINT
PRIMARY KEY

ALTER TABLE
ADD CHECK

Structured Query Language (SQL) : Suppression

On peut supprimer une table avec le mot clef DROP :

DROP TABLE

Si on considére les relations précédentes que se passe t-il si j'execute le code suivant:

DROP TABLE

21/74

Structured Query Language (SQL) : Suppression

On peut supprimer une table avec le mot clef DROP :

DROP TABLE

Si on considére les relations précédentes que se passe t-il si j'execute le code suivant:

DROP TABLE

constraint on table on table

21/74

Structured Query Language (SQL) : Suppression

LN}

< public

£ note
nid

/2 etu_id

P cours_id

f note

LN
< public
5 etu

eid
f nom
fl prenom

g mail

(N
& public
£ cours

cid

f titre

Dans quel ordre ?

- Etu, Eval, Cours

Structured Query Language (SQL) : Suppression

LN}

< public

£ note
nid

/2 etu_id

P cours_id

f note

LN
< public
5 etu

eid
f nom
fl prenom

g mail

(N
& public
£ cours

cid

f titre

Dans quel ordre ?

- Etu, Eval, Cours ©

Structured Query Language (SQL) : Suppression

LN}

< public

£ note
nid

/2 etu_id

P cours_id

f note

LN
< public
5 etu

eid
f nom
fl prenom

g mail

(N
& public
£ cours

cid

f titre

Dans quel ordre ?

- Etu, Eval, Cours ©
- Etu, Cours, Eval

Structured Query Language (SQL) : Suppression

LN}

< public

£ note
nid

/2 etu_id

P cours_id

f note

LN
< public
5 etu

eid
f nom
fl prenom

g mail

(N
& public
£ cours

cid

f titre

Dans quel ordre ?

- Etu, Eval, Cours ©
- Etu, Cours, Eval ©

Structured Query Language (SQL) : Suppression

LN}

< public

£ note
nid

/2 etu_id

P cours_id

f note

LN
< public
5 etu

eid
f nom
fl prenom

g mail

(N
& public
£ cours

cid

f titre

Dans quel ordre ?
- Etu, Eval, Cours ©
- Etu, Cours, Eval ©

-+ Eval, Cours, Etu

Structured Query Language (SQL) : Suppression

LN}

< public

£ note
nid

/2 etu_id

P cours_id

f note

LN
< public
5 etu

eid
f nom
fl prenom

g mail

(N
& public
£ cours

cid

f titre

Dans quel ordre ?
- Etu, Eval, Cours ©
- Etu, Cours, Eval ©
- Eval, Cours, Etu @

Structured Query Language (SQL) : Suppression

LN}

< public

£ note
nid

/2 etu_id

P cours_id

f note

LN
< public
5 etu

eid
f nom
fl prenom

g mail

(N
& public
£ cours

cid

f titre

Dans quel ordre ?
- Etu, Eval, Cours ©
- Etu, Cours, Eval ©
- Eval, Cours, Etu @

- Eval, Etu, Cours

Structured Query Language (SQL) : Suppression

LN

< public

£ etu

ia —+—— Dans quel ordre ?

f nom

§ prenom - Etu, Eval, Cours @

. - Etu, Cours, Eval ©@
S
;pum - Eval, Cours, Etu @
B note - Eval, Etu, Cours @

nid

/2 etu_id D —
P cours_id
f note

&

& public

£ cours

cid

f titre

Structured Query Language (SQL) : Suppression

LN

< public

£ etu

ia —+—— Dans quel ordre ?

f nom

B penom - Etu, Eval, Cours @

. - Etu, Cours, Eval ©
S
;pum - Eval, Cours, Etu @
B note - Eval, Etu, Cours @

nid

£ e > - Cours, Etu, Eval
P cours_id
f note

LN\

& public

£ cours

cid

f titre

Structured Query Language (SQL) : Suppression

LN

< public

£ etu

ia —+—— Dans quel ordre ?

f nom

§ prenom - Etu, Eval, Cours @

. - Etu, Cours, Eval ©
o
;pum - Eval, Cours, Etu @
B note - Eval, Etu, Cours @

nid

& ewid S - Cours, Etu, Eval ©
P cours_id
f note

&

& public

£ cours

cid

f titre

Structured Query Language (SQL) : Suppression

LN

< public

£ etu

ia —+—— Dans quel ordre ?

g nom

§ prenom - Etu, Eval, Cours ©

. - Etu, Cours, Eval ©@
S
;pum - Eval, Cours, Etu @
B note - Eval, Etu, Cours @

nid

& ewid S - Cours, Etu, Eval ©
P cours_id
B note - Cours, Eval, Etu

©

& public

£ cours

cid

f titre

Structured Query Language (SQL) : Suppression

LN

< public

£ etu

ia —+—— Dans quel ordre ?

g nom

§ prenom - Etu, Eval, Cours @

. - Etu, Cours, Eval ©
S
;pum - Eval, Cours, Etu @
B note - Eval, Etu, Cours @

nid

& ewid S - Cours, Etu, Eval ©
P cours_id
B note - Cours, Eval, Etu ©

©

& public

£ cours

cid

f titre

Structured Query Language (SQL) : Suppression

(N

< public

5 note
nid

P etu_id

/P cours_id

f note

LN
< public
FHetu

eid
f nom
fj prenom

B mail

LN
< public
[cours

cid

f titre

Dans quel ordre ?

- Etu, Eval, Cours @

- Etu, Cours, Eval @ ROP TABLE

- Eval, Cours, Etu @ DROP TABLE
DROP TABLE

- Eval, Etu, Cours @

- Cours, Etu, Eval ©

- Cours, Eval, Etu @

EXISTS
EXISTS
EXISTS

Structured Query Language (SQL) : Suppression

LN}
< public
£ note

nid
/2 etu_id
P cours_id

f note

LN
< public
5 etu

eid
f nom
fl prenom

g mail

(N
& public
5 cours

cid

f titre

Dans quel ordre ?
- Etu, Eval, Cours ©
- Etu, Cours, Eval ©@ DROP TABLE TF EXISTS
. Eval Cours EtU 0 DROP TABLE EXISTS
! ! DROP TABLE EXISTS
- Eval, Etu, Cours @
- Cours, Etu, Eval ©
- Cours, Eval, Etu ©
— Détruire les tables dans l'ordre inverse de création

— Si un champ de la table A référence un champ de la table B
alors A doit étre détruite avant B

Structured Query Language (SQL) : LDD - conclusion

Le langage de définition des données

Le LDD (ou DDL), permet de définir la structure des tables :

- Le nom des colonnes
- Le type des colonnes
- Les contraintes

- La création, la modification et la suppression des tables, des colonnes ou des
contraintes

23/74

Structured Query Language (SQL) : LDD - conclusion

Le langage de définition des données

Le LDD (ou DDL), permet de définir la structure des tables :
- Le nom des colonnes
- Le type des colonnes

- Les contraintes

- La création, la modification et la suppression des tables, des colonnes ou des
contraintes

Comment manipuler les données de la relation ?

23/74

Structured Query Language (SQL) : LDD - conclusion

Le langage de définition des données

Le LDD (ou DDL), permet de définir la structure des tables :

- Le nom des colonnes
- Le type des colonnes
- Les contraintes

- La création, la modification et la suppression des tables, des colonnes ou des
contraintes

Comment manipuler les données de la relation ?

1

Le langage de Manipulation des données

23/74

Le Language de Manipulation des
Données (LDD)

Structured Query Language (SQL) : Le LMD

Le LMD

Le langage de manipulation des données (LMD ou DML en anglais pour data
manipulation language) est un langage permettant d’ajouter, supprimer, modifier ou
rechercher des données. Une sous-partie du langage SQL définie les opérations du LMD,
en particulier via les instructions :

-+ INSERT pour insérer de nouveaux enregistrements
- SELECT pour sélectionner certains enregistrements et colonnes
- DELETE pour supprimer des enregistrements

- UPDATE pour mettre un jour des enregistrements

2474

Structured Query Language (SQL) : Linstruction INSERT

INSERT INTO nom_table (nom_coll, nom_col2) VALUES (val_coll, val_col2,..)
{ 4 {

dans la table sur les colonnes les valeurs

25/74

Structured Query Language (SQL) : Linstruction INSERT

INSERT INTO nom_table (nom_coll, nom_col2) VALUES (val_coll, val_col2,..)
{ 4 {

dans la table sur les colonnes les valeurs
Précisions

- Les chaines de caractéres sont délimitées par des guillemets simples

— "ma_chaine'

25/74

Structured Query Language (SQL) : Linstruction INSERT

INSERT INTO nom_table (nom_coll, nom_col2) VALUES (val_coll, val_col2,..)
{ 4 {

dans la table sur les colonnes les valeurs
Précisions

- Les chaines de caractéres sont délimitées par des guillemets simples

— "ma_chaine'

- Sil'on conserve l'ordre des colonnes il n'est pas nécessaire de spécifier les noms

25/74

Structured Query Language (SQL) : Linstruction INSERT

INSERT INTO nom_table (nom_coll, nom_col2) VALUES (val_coll, val_col2,..)
X \ A
dans la table sur les colonnes les valeurs
Précisions
- Les chaines de caractéres sont délimitées par des guillemets simples
— "ma_chaine'
- Sil'on conserve l'ordre des colonnes il n'est pas nécessaire de spécifier les noms

- Certaines colonnes ne sont pas obligatoirement spécifiées

— pour les colonnes ayant une valeur par défaut ou s'incrémentant automatiquement

25/74

Structured Query Language (SQL) : Linstruction INSERT

INSERT INTO nom_table (nom_coll, nom_col2) VALUES (val_coll, val_col2,..)
X \ A
dans la table sur les colonnes les valeurs
Précisions
- Les chaines de caractéres sont délimitées par des guillemets simples
— "ma_chaine'
- Sil'on conserve l'ordre des colonnes il n'est pas nécessaire de spécifier les noms

- Certaines colonnes ne sont pas obligatoirement spécifiées

— pour les colonnes ayant une valeur par défaut ou s'incrémentant automatiquement

- Sur certains SGBD on peut ajouter plusieurs enregistrements

— ..VALUES (val_col1_e1, val_col2_e1, ...), (val_col1_e2, val_col2_e2, ...)

25/74

Structured Query Language (SQL) : Linstruction INSERT (exemple)

- Etu(eid: serial, nom: str, prenom: str, mail: str)
- Cours(cid: serial, titre: str)
- Eval(nid: serial, etu_id: int, cours_id: int, note: float)

26/74

Structured Query Language (SQL) : Linstruction INSERT (exemple)

- Etu(eid: serial, nom: str, prenom: str, mail: str)
- Cours(cid: serial, titre: str)

- Eval(nid: serial, etu_id: int, cours_id: int, note: float)

— Ajout de 'étudiant GATOR Ali (adresse mail agamail.com)

26/74

Structured Query Language (SQL) : Linstruction INSERT (exemple)

- Etu(eid: serial, nom: str, prenom: str, mail: str)
- Cours(cid: serial, titre: str)
- Eval(nid: serial, etu_id: int, cours_id: int, note: float)

— Ajout de 'étudiant GATOR Ali (adresse mail agamail.com)

INSERT INTO VALUES 'Ali', 'GATOR', 'agamail.com'

26/74

Structured Query Language (SQL) : Linstruction INSERT (exemple)

- Etu(eid: serial, nom: str, prenom: str, mail: str)
- Cours(cid: serial, titre: str)
- Eval(nid: serial, etu_id: int, cours_id: int, note: float)

— Ajout de 'étudiant GATOR Ali (adresse mail agamail.com)

INSERT INTO VALUES 'Ali', 'GATOR', 'agamail.com' ‘3

26/74

Structured Query Language (SQL) : Linstruction INSERT (exemple)

- Etu(eid: serial, nom: str, prenom: str, mail: str)
- Cours(cid: serial, titre: str)
- Eval(nid: serial, etu_id: int, cours_id: int, note: float)

— Ajout de 'étudiant GATOR Ali (adresse mail agamail.com)

INSERT INTO VALUES 'Ali', 'GATOR', 'agamail.com' 9

INSERT INTO VALUES 'GATOR', 'Ali', 'agamail.com'

26/74

Structured Query Language (SQL) : Linstruction INSERT (exemple)

- Etu(eid: serial, nom: str, prenom: str, mail: str)
- Cours(cid: serial, titre: str)
- Eval(nid: serial, etu_id: int, cours_id: int, note: float)

— Ajout de 'étudiant GATOR Ali (adresse mail agamail.com)

INSERT INTO VALUES 'Ali', 'GATOR', 'agamail.com' 9

INSERT INTO VALUES 'GATOR', 'Ali', 'agamail.com'

26/74

Structured Query Language (SQL) : Linstruction INSERT (exemple)

- Etu(eid: serial, nom: str, prenom: str, mail: str)
- Cours(cid: serial, titre: str)
- Eval(nid: serial, etu_id: int, cours_id: int, note: float)

— Ajout de 'étudiant GATOR Ali (adresse mail agamail.com)

INSERT INTO VALUES 'Ali', 'GATOR', 'agamail.com' ‘3
INSERT INTO VALUES 'GATOR', 'Ali', 'agamail.com'
INSERT INTO VALUES ('Ali', 'GATOR', 'agamail.com'

26/74

Structured Query Language (SQL) : Linstruction INSERT (exemple)

- Etu(eid: serial, nom: str, prenom: str, mail: str)
- Cours(cid: serial, titre: str)
- Eval(nid: serial, etu_id: int, cours_id: int, note: float)

— Ajout de 'étudiant GATOR Ali (adresse mail agamail.com)

INSERT INTO VALUES 'Ali', 'GATOR', 'agamail.com' ‘3
INSERT INTO VALUES 'GATOR', 'Ali', 'agamail.com'
INSERT INTO VALUES ('Ali', 'GATOR', ‘'agamail.com' l‘

26/74

Structured Query Language (SQL) : Linstruction INSERT (exemple)

- Ftu(eid: serial, nom: str, prenom: str, mail: str)
- Cours(cid: serial, titre: str)
- Eval(nid: serial, etu_id: int, cours_id: int, note: float)

— Ajout de 'étudiant GATOR Ali (adresse mail agamail.com)

INSERT INTO VALUES 'Ali', 'GATOR', 'agamail.com' ‘3
INSERT INTO VALUES 'GATOR', 'Ali', 'agamail.com'

INSERT INTO VALUES ('Ali', 'GATOR', 'agamail.com' l‘
INSERT INTO VALUES 'Ali', 'GATOR', 'agamail.com'

26/74

Structured Query Language (SQL) : Linstruction INSERT (exemple)

- Ftu(eid: serial, nom: str, prenom: str, mail: str)
- Cours(cid: serial, titre: str)
- Eval(nid: serial, etu_id: int, cours_id: int, note: float)

— Ajout de 'étudiant GATOR Ali (adresse mail agamail.com)

INSERT INTO VALUES 'Ali', 'GATOR', 'agamail.com' ‘3
INSERT INTO VALUES 'GATOR', 'Ali', 'agamail.com'

INSERT INTO VALUES ('Ali', 'GATOR', 'agamail.com' l‘
INSERT INTO VALUES 'Ali', 'GATOR', 'agamail.com' !‘

On préférera la 3éme option

26/74

Structured Query Language (SQL) : Linstruction INSERT (exemple)

Etu | CREATE TABLE
eid nom prenom mail
1 Zeblouse Agathe az@* > INTEGER
2 Huai Odile oh@***** INTEGER
3 Peuplu Jean ip@*er FLOAT DEFAULT
4 Hochon Paul hp@*+*+* CONSTRAINT PRIMARY KEY
5 Gator Ali ag@**r* CONSTRAINT FOREIGN KEY
\ Cours |
= = CONSTRAINT FOREIGN KEY
[cid [titre \
1 Bases de données avancées CONSTRAINT UNIQUE
2 | Mathematiques CONSTRAINT CHECK AND
3 Anglais

2774

Structured Query Language (SQL) : Linstruction INSERT (exemple)

INSERT INTO
VALUES

Quelle est la valeur de l'enregistrement
ajouté ?

28/74

Structured Query Language (SQL) : Linstruction INSERT (exemple)

INSERT INTO

VALUES nid ‘ etu_id cours_id note
Quelle est la valeur de 'enregistrement 1 ‘ 1 2 0
ajouté ?

28/74

Structured Query Language (SQL) : Linstruction INSERT (exemple)

INSERT INTO
VALUES nid ‘ etu_id cours_id note

Quelle est la valeur de l'enregistrement 1 ‘ 1 2 0
ajouté ?

INSERT INTO

VALUES

Que se passe t-il ?

28/74

Structured Query Language (SQL) : Linstruction INSERT (exemple)

INSERT INTO
VALUES

Quelle est la valeur de l'enregistrement
ajouté ?
INSERT INTO

VALUES

Que se passe t-il ?

nid \ etu_id cours_id note

1] 1 2 0

Key
exists key value unique
constraint "u_note_etu_cours"

28/74

Structured Query Language (SQL) : Linstruction INSERT (exemple)

INSERT INTO
VALUES nid ‘ etu_id cours_id note
Quelle est la valeur de l'enregistrement 1 ‘ 1 2 0
ajouté ?
INSERT INTO Key
VALUES exists key value unique

Que se passet iL? constraint "u_note_etu_cours"

INSERT INTO

VALUES

Que se passe t-il ?

28/74

Structured Query Language (SQL) : Linstruction INSERT (exemple)

INSERT INTO
VALUES nid ‘ etu_id cours_id note
Quelle est la valeur de l'enregistrement 1 ‘ 1 2 0
ajouté ?
INSERT INTO Key
VALUES exists key value unique

Que se passet iL? constraint "u_note_etu_cours"

INSERT INTO

Key not in table
VALUES

"cours".insert or update on table "eval"

Que se passet iL? foreign key constraint "fk_note_cours"

28/74

Structured Query Language (SQL) : Uinstruction SELECT

SELECT colonnel, colonne2,.. FROM nom_table WHERE condition
{ 1 { { { {

Sélection des colonnes 1 et 2 sur la table ol une condition

— SELECT pour informer que l'on souhaite “extraire” des enregistrements/colonnes
— FROM on spécifie la ou les relations dans lesquelles se trouvent les enregistrements
— WHERE [condition] on filtre les enregistrements a partir des valeurs d'un ou des
champs

29/74

Structured Query Language (SQL) : Sélection des champs

On considere les relations précédentes

Sélectionner le champ note de la table eval

30/74

Structured Query Language (SQL) : Sélection des champs

On considere les relations précédentes

Sélectionner le champ note de la table eval - SELECT From

30/74

Structured Query Language (SQL) : Sélection des champs

On considere les relations précédentes

Sélectionner le champ note de la table eval - SELECT From

sélectionner le champ note et nid de la table eval —

30/74

Structured Query Language (SQL) : Sélection des champs

On considere les relations précédentes

Sélectionner le champ note de la table eval - SELECT From

sélectionner le champ note et nid de la table eval — SELECT From

30/74

Structured Query Language (SQL) : Sélection des champs

On considere les relations précédentes

Sélectionner le champ note de la table eval - SELECT From
sélectionner le champ note et nid de la table eval — SELECT From
Sélectionner tous les champs de la table eval —

30/74

Structured Query Language (SQL) : Sélection des champs

On considere les relations précédentes

Sélectionner le champ note de la table eval - SELECT From
sélectionner le champ note et nid de la table eval — SELECT From
Sélectionner tous les champs de la table eval — SELECT * From

30/74

Structured Query Language (SQL) : Alias

Si SELECT * FROM retourne la relation Comment faire pour obtenir le résultat
suivante : ci-dessous ?

cid | titre — Numero | Intitule_du_cours

1 Bases de données avancées 1 Bases de données avancées

2 Mathématiques 2 Mathématiques

3 Anglais 3 Anglais

31/74

Structured Query Language (SQL) : Alias

Si SELECT * FROM retourne la relation Comment faire pour obtenir le résultat
suivante : ci-dessous ?

cid | titre — Numero | Intitule_du_cours

1 Bases de données avancées 1 Bases de données avancées

2 Mathématiques 2 Mathématiques

3 Anglais 3 Anglais

Utilisation d’un alias (renommage dans le retour de la sélection)

SELECT AS AS FROM

A Les noms des colonnes ne sont pas modifiés dans la relation

31/74

Structured Query Language (SQL) : Les conditions

Comment sélectionner conditionnellement a des valeurs ?
WHERE colonne_ou_valeur OPERATEUR colonne_ou_valeur_ou_sous_requéte

32/74

Structured Query Language (SQL) : Les conditions

Comment sélectionner conditionnellement a des valeurs ?
WHERE colonne_ou_valeur OPERATEUR colonne_ou_valeur_ou_sous_requéte

Opérateurs

— Les opérateurs <, >, <, >, =1 =

32/74

Structured Query Language (SQL) : Les conditions

Comment sélectionner conditionnellement a des valeurs ?
WHERE colonne_ou_valeur OPERATEUR colonne_ou_valeur_ou_sous_requéte

Opérateurs

— Les opérateurs <, >, <, >, =,1 =
— Lopérateur IN par exemple coll IN (valy,valy,...,val,)

32/74

Structured Query Language (SQL) : Les conditions

Comment sélectionner conditionnellement a des valeurs ?
WHERE colonne_ou_valeur OPERATEUR colonne_ou_valeur_ou_sous_requéte

Opérateurs

— Les opérateurs <, >, <, >, =,1 =
— Lopérateur IN par exemple coll IN (valy,valy,...,val,)
— Les opérateurs de comparaison de chaines de caractéres (LIKE)

32/74

Structured Query Language (SQL) : Les conditions (exemples)

Sélectionner les étudiants et les cours ot
'étudiant a eu une note supérieure a 15

Structured Query Language (SQL) : Les conditions (exemples)

Sélectionner les étudiants et les cours ou s SELECT FROM
l'étudiant a eu une note supérieure a 15 WHERE

Structured Query Language (SQL) : Les conditions (exemples)

Sélectionner les étudiants et les cours ou s SELECT FROM
l'étudiant a eu une note supérieure a 15 WHERE

Sélectionner le prénom de l'étudiant de nom
“Gator”

Structured Query Language (SQL) : Les conditions (exemples)

Sélectionner les étudiants et les cours ou s SELECT FROM
l'étudiant a eu une note supérieure a 15 WHERE

Sélectionner le prénom de ['étudiant de nom - SELECT FROM

“Gator” WHERE 'Gator'

Structured Query Language (SQL) : Les conditions (exemples)

Sélectionner les étudiants et les cours ou s SELECT FROM
l'étudiant a eu une note supérieure a 15 WHERE

Sélectionner le prénom de ['étudiant de nom - SELECT FROM

“Gator” WHERE 'Gator'

Sélectionner les étudiants dont le nom
commence par la lettre “H"

Structured Query Language (SQL) : Les conditions (exemples)

Sélectionner les étudiants et les cours ou s SELECT FROM
l'étudiant a eu une note supérieure a 15 WHERE

Sélectionner le prénom de ['étudiant de nom - SELECT FROM

“Gator” WHERE 'Gator'
Selectionner les étudiants dont le nom . SELEET Y
commence par la lettre “H" WHERE LIKE "H%'

Structured Query Language (SQL) : Les conditions (exemples)

Sélectionner les étudiants et les cours ou s SELECT FROM
l'étudiant a eu une note supérieure a 15 WHERE

Sélectionner le prénom de ['étudiant de nom - SELECT FROM

“Gator” WHERE 'Gator'

Selectionner les étudiants dont le nom . SELEET Y
commence par la lettre “H” WHERE LIKE 'H%'

Sélectionner les eid des étudiants avec le
prénom Agathe ou Odile

Structured Query Language (SQL) : Les conditions (exemples)

Sélectionner les étudiants et les cours ou s SELECT FROM
l'étudiant a eu une note supérieure a 15 WHERE

Sélectionner le prénom de ['étudiant de nom - SELECT FROM

“Gator” WHERE 'Gator'

Selectionner les étudiants dont le nom . SELEET Y

commence par la lettre “H" WHERE LIKE "H%'

Sélectionner les eid des étudiants avec le . Sl e

prenom Agathe ou Odile WHERE IN ('Agathe', 'oOdile’

Structured Query Language (SQL) : Conjonction et Disjonction

Comment sélectionner selon plusieurs critéres ?
— Sélectionner les étudiants a partir de leurs nom et prénom
— Les notes entre deux valeurs

34/74

Structured Query Language (SQL) : Conjonction et Disjonction

Comment sélectionner selon plusieurs critéres ?
— Sélectionner les étudiants a partir de leurs nom et prénom
— Les notes entre deux valeurs

Les opérateurs OR et AND

On peut cumuler les conditions en utilisant les opérateurs binaires “ou” et “et” :

WHERE AND OR

34/74

Structured Query Language (SQL) : Conjonction et Disjonction

Comment sélectionner selon plusieurs critéres ?
— Sélectionner les étudiants a partir de leurs nom et prénom
— Les notes entre deux valeurs

Les opérateurs OR et AND

On peut cumuler les conditions en utilisant les opérateurs binaires “ou” et “et” :

WHERE AND OR

L'Opérateur NOT

On peut utiliser la négation logique :

WHERE NOT

34/74

Structured Query Language (SQL) : Les conditions (exemples)

Sélectionner les étudiants et les cours ou la
note est comprise entre 10 et 15

Structured Query Language (SQL) : Les conditions (exemples)

Sélectionner les etudiants et les coursou la ~ _y SELECT FROM
note est comprise entre 10 et 15 WHERE AND

Structured Query Language (SQL) : Les conditions (exemples)

Sélectionner les etudiants et les coursou la ~ _y SELECT FROM
note est comprise entre 10 et 15 WHERE AND

Sélectionner les identifiants des étudiants
“Agathe Zeblouse” et “Odile Huai”

Structured Query Language (SQL) : Les conditions (exemples)

Sélectionner les étudiants et les coursou la SELECT FROM
note est comprise entre 10 et 15 WHERE AND
SELECT FROM
Sélectionner les identifiants des étudiants WHERE
— 'Agathe’ AND 'Zeblouse'

“Agathe Zeblouse” et “Odile Huai” OR

'0dile' AND '"Huai'

Structured Query Language (SQL) : Les conditions (exemples)

Sélectionner les étudiants et les coursou la SELECT FROM
note est comprise entre 10 et 15 WHERE AND
SELECT FROM
Sélectionner les identifiants des étudiants WHERE
— 'Agathe’ AND 'Zeblouse'

“Agathe Zeblouse” et “Odile Huai” OR

'0dile' AND '"Huai'

Sélectionner les prénoms des étudiants
n‘ayant pas de “e” (minuscule) dans leurs

nom de famille

Structured Query Language (SQL) : Les conditions (exemples)

Sélectionner les étudiants et les cours ou la

note est comprise entre 10 et 15

Sélectionner les identifiants des étudiants
“Agathe Zeblouse” et “Odile Huai”

Sélectionner les prénoms des étudiants
n‘ayant pas de “e” (minuscule) dans leurs

nom de famille

SELECT FROM
WHERE AND
SELECT FROM
WHERE
'Agathe’ AND 'Zeblouse'
OR
'0dile' AND '"Huai'
SELECT FROM
WHERE NOT LIKE '%e%"

Structured Query Language (SQL) : Les Aggregats

Agrégats
On peut utiliser des agrégats sur les colonnes en utilisant la syntaxe suivante:

SELECT FROM WHERE

Il existe plusieurs de ces fonctions :

- MAX, MIN la valeur maximum, la valeur minimum d'une colonne
- AVG la valeur moyenne d'une colonne

- COUNT le nombre d'enregistrements

Structured Query Language (SQL) : Les Aggregats

Agrégats

On peut utiliser des agrégats sur les colonnes en utilisant la syntaxe suivante:
SELECT FROM WHERE

Il existe plusieurs de ces fonctions :

- MAX, MIN la valeur maximum, la valeur minimum d'une colonne
- AVG la valeur moyenne d'une colonne

- COUNT le nombre d'enregistrements

Un exemple :

Le nombre de notes supérieures a 10

Structured Query Language (SQL) : Les Aggregats

Agrégats
On peut utiliser des agrégats sur les colonnes en utilisant la syntaxe suivante:

SELECT FROM WHERE

Il existe plusieurs de ces fonctions :

- MAX, MIN la valeur maximum, la valeur minimum d'une colonne
- AVG la valeur moyenne d'une colonne

- COUNT le nombre d'enregistrements
Un exemple :

Le nombre de notes supérieures a 10 — SELEVSLE";?UNT a3 i

Structured Query Language (SQL) : Les Aggregats - probleme

Imaginons que nous souhaitions afficher la moyenne de chaque étudiant avec leur

identifiant:

Instance de la relation eval

nid etu_id cours_id note
2 0
2 15
3 6
1 18

oW W ey

1
4
5
7

37/74

Structured Query Language (SQL) : Les Aggregats - probleme

Imaginons que nous souhaitions afficher la moyenne de chaque étudiant avec leur

identifiant:
Résultat souhaité !

Instance de la relation eval

nid etu_id cours_id note N
1 1 2 0 etu_id moyenne
4 3 2 15 3 10.5
5 3 3 6 1 9
7 1 1 18
SELECT AVG AS
FROM

37/74

Structured Query Language (SQL) : Les Aggregats - probléme

Imaginons que nous souhaitions afficher la moyenne de chaque étudiant avec leur

identifiant:
Instance de la relation eval) .
. . . Résultat souhaité !
nid etu_id cours_id note N
1 1 2 0 etu_id moyenne
4 3 2 15 3 10.5
5 3 3 6 1 9
7 1 1 18

— column "eval.etu_id"

SELECT AVG AS . -

FROM 0 |nin GROUP BY or

37/74

Structured Query Language (SQL) : Les Aggregats - probléme

Imaginons que nous souhaitions afficher la moyenne de chaque étudiant avec leur

identifiant:
Instance de la relation eval) .
. . . Résultat souhaité !
nid etu_id cours_id note N
1 1 2 0 etu_id moyenne
4 3 2 15 3 10.5
5 3 3 6 1 9
7 1 1 18

— column "eval.etu_id"

SELECT AVG AS . -

FROM 0 |nin GROUP BY or

Il faut grouper par identifiant (mais aussi pour toutes les colonnes sur lesquelles aucun

agrégat n'est appliqué)

37/74

Structured Query Language (SQL) : Les Aggregats et GROUP BY

On va utiliser le mot clef GROUP BY

Structured Query Language (SQL) : Les Aggregats et GROUP BY

On va utiliser le mot clef GROUP BY

etu_id moyenne
SELECT AVG AS 3 105
FROM GROUP BY (V] ‘
1 9

On peux aussi trier le résultat ou bien limiter le nombre de résultats retourneés :

- ORDER BY permettant de trier (ASC pour un trie croissant et DESC pour un trie
décroissant)

- LIMIT permettant de limiter le nombre d’enregistrements retournés

Sélectionnons les deux meilleures moyennes des
étudiants

Structured Query Language (SQL) : Les Aggregats et GROUP BY

On va utiliser le mot clef GROUP BY

etu_id moyenne
SELECT AVG AS 3 105
FROM GROUP BY (V] ‘
1 9

On peux aussi trier le résultat ou bien limiter le nombre de résultats retourneés :

- ORDER BY permettant de trier (ASC pour un trie croissant et DESC pour un trie
décroissant)

- LIMIT permettant de limiter le nombre d’enregistrements retournés

Sélectionnons les deux meilleures moyennes des

étudiants N etu_id moyenne
SELECT AVG AS) 1 9
FROM GROUP BY 3 105
ORDER BY DESC LIMIT

Structured Query Language (SQL) : Les sous requétes

Sous requéte

On peut définir des sous-requétes pour les conditions (on peut donc utiliser plusieurs
tables pour la sélection)

SELECT FROM WHERE SELECT

Un exemple :

Le nom des étudiants ayant une note supérieure
a7

Structured Query Language (SQL) : Les sous requétes

Sous requéte

On peut définir des sous-requétes pour les conditions (on peut donc utiliser plusieurs
tables pour la sélection)

SELECT FROM WHERE SELECT
Un exemple :
SELECT FROM
- . P WHERE IN
Le nom des étudiants ayant une note superieure N
a17 SELECT FROM
WHERE

Structured Query Language (SQL) : HAVING

La commande HAVING

Quelquefois nous souhaitons sélectionner a partir d'une condition dépendant d'un
agrégat

SELECT FROM WHERE HAVING

40/74

Structured Query Language (SQL) : HAVING

La commande HAVING

Quelquefois nous souhaitons sélectionner a partir d'une condition dépendant d'un

agrégat
SELECT FROM WHERE HAVING
Un exemple :
Les moyennes des étudiants ayant au N

moins deux notes

40/74

Structured Query Language (SQL) : HAVING

La commande HAVING

Quelquefois nous souhaitons sélectionner a partir d'une condition dépendant d'un

agrégat
SELECT FROM WHERE HAVING
Un exemple :
Les moyennes des étudiants ayant au N SELECT AVG FROM

moins deux notes GROUP BY HAVING COUNT

40/74

Structured Query Language (SQL) : Exercices (au tableau)

En considérant les relations précédentes :
- Etu(eid: serial, nom: str, prenom: str, mail: str)
- Cours(cid: serial, titre: str)

- Eval(nid: serial, etu_id: int, cours_id: int, note: float)

Question 1: Question 2 :

Afficher la moyenne obtenue sur les cours d'identifiants Retrouver les identifiants des étudiants ayant une
1 et 3 si celles-ci sont supérieures a 10 moyenne supérieure a la moyenne globale
Question 3 : Question 4 :

Retrouver les noms et préenoms des utilisateurs ayant Sélectionner les deux noms de cours avec les

une note supérieure a 10 dans le cours intitulé “Anglais” meilleures moyennes

4174

Structured Query Language (SQL) : Exercices (au tableau)

Question 1: S
Afficher la moyenne obtenue sur les cours d'identifiant

1 et 3 si celles-ci sont supérieures a 10

4274

Structured Query Language (SQL) : Exercices (au tableau)

Question 1: S
Afficher la moyenne obtenue sur les cours d'identifiant

1 et 3 si celles-ci sont supérieures a 10
SELECT AVG FROM
WHERE OR

GROUP BY
HAVING AVG

4274

Structured Query Language (SQL) : Exercices (au tableau)

Question 1: Question 2::
Afficher la moyenne obtenue sur les cours d'identifiant Retrouver les identifiants des étudiants ayant une
1 et 3 si celles-ci sont supérieures a 10 moyenne supérieure a la moyenne globale
SELECT AVG FROM
WHERE OR
GROUP BY
HAVING AVG

4274

Structured Query Language (SQL) : Exercices (au tableau)

Question 1: Question 2::
Afficher la moyenne obtenue sur les cours d'identifiant Retrouver les identifiants des étudiants ayant une
1 et 3 si celles-ci sont supérieures a 10 moyenne supérieure a la moyenne globale
SELECT AVG FROM SELECT FROM
WHERE OR GROUP BY
GROUP BY HAVING AVG
HAVING AVG SELECT AVG FROM

4274

Structured Query Language (SQL) : Exercices (au tableau)

Question 1: S Question2: A
Afficher la moyenne obtenue sur les cours d'identifiant Retrouver les identifiants des étudiants ayant une
1 et 3 si celles-ci sont supérieures a 10 moyenne supérieure a la moyenne globale
SELECT AVG FROM SELECT FROM

WHERE OR GROUP BY

GROUP BY HAVING AVG

HAVING AVG SELECT AVG FROM
Question 3:

Retrouver les noms et prénoms des utilisateurs ayant une

Zu

note supérieure a 10 dans le cours intitulé “Anglais”

4274

Structured Query Language (SQL) : Exercices (au tableau)

Question 1: S
Afficher la moyenne obtenue sur les cours d'identifiant

1 et 3 si celles-ci sont supérieures a 10

SELECT AVG FROM
WHERE OR
GROUP BY
HAVING AVG

Question 3:
Retrouver les noms et prénoms des utilisateurs ayant une

Zu

note supérieure a 10 dans le cours intitulé “Anglais”

SELECT FROM
WHERE IN SELECT FROM
WHERE SELECT FROM
WHERE 'Anglais’
AND

4274

Question 2:
Retrouver les identifiants des étudiants ayant une

moyenne supérieure a la moyenne globale

SELECT
GROUP BY
HAVING AVG
SELECT AVG

FROM

FROM

Structured Query Language (SQL) : Exercices (au tableau)

Question 1: S
Afficher la moyenne obtenue sur les cours d'identifiant

1 et 3 si celles-ci sont supérieures a 10

SELECT AVG FROM
WHERE OR
GROUP BY
HAVING AVG

Question 3:
Retrouver les noms et prénoms des utilisateurs ayant une

Zu

note supérieure a 10 dans le cours intitulé “Anglais”

SELECT FROM
WHERE IN SELECT FROM
WHERE SELECT FROM
WHERE 'Anglais’
AND

4274

Question 2:
Retrouver les identifiants des étudiants ayant une

moyenne supérieure a la moyenne globale

SELECT
GROUP BY
HAVING AVG
SELECT AVG

FROM

FROM

Question 4 :
Selectionner les deux noms de cours avec les

meilleures moyennes

Structured Query Language (SQL) : Exercices (au tableau)

Question 1: S
Afficher la moyenne obtenue sur les cours d'identifiant

1 et 3 si celles-ci sont supérieures a 10

SELECT AVG FROM
WHERE OR
GROUP BY
HAVING AVG

Question 3:
Retrouver les noms et prénoms des utilisateurs ayant une

Zu

note supérieure a 10 dans le cours intitulé “Anglais”

SELECT FROM
WHERE IN SELECT FROM
WHERE SELECT FROM
WHERE 'Anglais’
AND

4274

Question 2:
Retrouver les identifiants des étudiants ayant une

moyenne supérieure a la moyenne globale

SELECT
GROUP BY
HAVING AVG
SELECT AVG

FROM

FROM

Question 4 :
Selectionner les deux noms de cours avec les

meilleures moyennes

SELECT FROM
WHERE IN (SELECT FROM
SELECT AVG as
GROUP BY
ORDER BY DESC LIMIT

Structured Query Language (SQL) : ALL et ANY

La commande ALL permet de comparer une valeur a un ensemble de valeurs retourné
par une sous-requéte. La condition doit étre vérifier pour toutes les valeurs retournées
par la sous-requéte.

4374

Structured Query Language (SQL) : ALL et ANY

La commande ALL permet de comparer une valeur a un ensemble de valeurs retourné
par une sous-requéte. La condition doit étre vérifier pour toutes les valeurs retournées
par la sous-requéte.

WHERE ALL(SELECT FROM

4374

Structured Query Language (SQL) : ALL et ANY

La commande ALL permet de comparer une valeur a un ensemble de valeurs retourné
par une sous-requéte. La condition doit étre vérifier pour toutes les valeurs retournées
par la sous-requéte.

WHERE ALL(SELECT FROM

La sous requéte retourne y_1y_2,.., y_n, alors la requéte est équivalente a

43/74

Structured Query Language (SQL) : ALL et ANY

La commande ALL permet de comparer une valeur a un ensemble de valeurs retourné
par une sous-requéte. La condition doit étre vérifier pour toutes les valeurs retournées
par la sous-requéte.

WHERE ALL(SELECT FROM

La sous requéte retourne y_1y_2,.., y_n, alors la requéte est équivalente a

WHERE AND AND AND

43/74

Structured Query Language (SQL) : ALL et ANY

La commande ALL permet de comparer une valeur a un ensemble de valeurs retourné
par une sous-requéte. La condition doit étre vérifier pour toutes les valeurs retournées
par la sous-requéte.

WHERE ALL(SELECT FROM

La sous requéte retourne y_1y_2,.., y_n, alors la requéte est équivalente a

WHERE AND AND AND

Exemple : Quels sont les étudiants dont la note minimale est différente de toutes les
notes de l'étudiant 17?

43/74

Structured Query Language (SQL) : ALL et ANY

La commande ALL permet de comparer une valeur a un ensemble de valeurs retourné
par une sous-requéte. La condition doit étre vérifier pour toutes les valeurs retournées
par la sous-requéte.

WHERE ALL(SELECT FROM

La sous requéte retourne y_1y_2,.., y_n, alors la requéte est équivalente a

WHERE AND AND AND

Exemple : Quels sont les étudiants dont la note minimale est différente de toutes les
notes de l'étudiant 17?

SELECT from GROUP BY HAVING MIN ALL
SELECT FROM WHERE

43/74

Structured Query Language (SQL) : ANY

La commande ANY permet de comparer une valeur a un ensemble de valeurs retournées
par une sous-requéte. La condition doit étre vérifier par au moins une des valeurs
retournées par la sous-requéte.

4474

Structured Query Language (SQL) : ANY

La commande ANY permet de comparer une valeur a un ensemble de valeurs retournées
par une sous-requéte. La condition doit étre vérifier par au moins une des valeurs
retournées par la sous-requéte.

WHERE ANY(SELECT

4474

Structured Query Language (SQL) : ANY

La commande ANY permet de comparer une valeur a un ensemble de valeurs retournées
par une sous-requéte. La condition doit étre vérifier par au moins une des valeurs
retournées par la sous-requéte.

WHERE ANY(SELECT

Et que la sous requéte retourne y_1y_2,.., y_n, alors la requéte est équivalente a

4474

Structured Query Language (SQL) : ANY

La commande ANY permet de comparer une valeur a un ensemble de valeurs retournées
par une sous-requéte. La condition doit étre vérifier par au moins une des valeurs
retournées par la sous-requéte.

WHERE ANY(SELECT

Et que la sous requéte retourne y_1y_2,.., y_n, alors la requéte est équivalente a

WHERE OR OR OR

4474

Structured Query Language (SQL) : ANY

La commande ANY permet de comparer une valeur a un ensemble de valeurs retournées
par une sous-requéte. La condition doit étre vérifier par au moins une des valeurs
retournées par la sous-requéte.

WHERE ANY(SELECT

Et que la sous requéte retourne y_1y_2,.., y_n, alors la requéte est équivalente a

WHERE OR OR OR

Exemple : Quels sont les étudiants dont la note minimale correspond au moins a une
note de '‘étudiant 17?

4474

Structured Query Language (SQL) : ANY

La commande ANY permet de comparer une valeur a un ensemble de valeurs retournées
par une sous-requéte. La condition doit étre vérifier par au moins une des valeurs
retournées par la sous-requéte.

WHERE ANY(SELECT

Et que la sous requéte retourne y_1y_2,.., y_n, alors la requéte est équivalente a

WHERE OR OR OR

Exemple : Quels sont les étudiants dont la note minimale correspond au moins a une
note de '‘étudiant 17?

SELECT from GROUP BY HAVING MIN ANY
SELECT FROM WHERE

4474

Structured Query Language (SQL) : Les opérateurs arithmétiques

Opérateurs arithmeétiques
On peut utiliser des opérateurs arithmétiques sur les colonnes
- L'addition +
- La soustraction —
- la multiplication
- la division /
Exemple :

— Ramener les notes sur 100 points et afficher celles supérieures a 50

45/74

Structured Query Language (SQL) : Les opérateurs arithmétiques

Opérateurs arithmeétiques
On peut utiliser des opérateurs arithmétiques sur les colonnes
- L'addition +
- La soustraction —
- la multiplication
- la division /
Exemple :

— Ramener les notes sur 100 points et afficher celles supérieures a 50

etu_id | cours_id not_sur_100
SELECT as 3 2 65
FROM WHERE 1 1 30

1 2 90

45/74

Structured Query Language (SQL) : Les opérations ensemblistes

Le résultat d’'une requéte définit un ensemble (un sous ensemble d’une relation) — Les
opérations ensemblistes permettent de faire des opérations entres différentes relations
(de méme schéma)

Un exemple
Soit deux ensembles A et B :

- A contient les notes des étudiants ayant au moins une note en dessous de 7

- B contient les notes des étudiants ayant une moyenne supérieur a 10

Quels sont les étudiants ayant une moyenne supérieure a 10 et au moins une note
inférieure a 7

— Intersection des deux ensembles
Il existe une autre solution en utilisant une conjonction

46/74

Structured Query Language (SQL) : Les opérations ensemblistes

Les opérateurs ensemblistes

- Lunion de deux résultats
SELECT FROM UNION SELECT FROM

- LUintersection de deux résultats
SELECT FROM INTERSECT SELECT FROM

- La Différence (différent mots clefs selon les SGBDs)
SELECT FROM EXCEPT SELECT FROM

47/74

Structured Query Language (SQL) : Les opérations ensemblistes (exemples)

- Eval(nid: serial, etu_id: int, cours_id: int, note: float)

Proposez une solution faisant intervenir un opérateur ensembliste

Sélectionner les étudiants
(identifiants) ayant une moyenne
supérieure a 10 mais au moins une
note inférieur a 7

48/74

Structured Query Language (SQL) : Les opérations ensemblistes (exemples)

- Eval(nid: serial, etu_id: int, cours_id: int, note: float)

Proposez une solution faisant intervenir un opérateur ensembliste

Sélectionner les étudiants
(identifiants) ayant une moyenne SELECT FROM GROUP BY HAVING AVG
supérieure a 10 mais au moins une

T X SELECT FROM GROUP BY HAVING MIN
note inférieura 7

48/74

Structured Query Language (SQL) : Les opérations ensemblistes (exemples)

- Eval(nid: serial, etu_id: int, cours_id: int, note: float)
Proposez une solution faisant intervenir un opérateur ensembliste

Sélectionner les étudiants
(identifiants) ayant une moyenne SELECT FROM GROUP BY HAVING AVG
supérieure a 10 mais au moins une

T X SELECT FROM GROUP BY HAVING MIN
note inférieura 7

Selectionner les étudiants
(identifiants) ayant une moyenne
supérieur a 10 ou ayant au moins une
note supérieure a 15

48/74

Structured Query Language (SQL) : Les opérations ensemblistes (exemples)

- Eval(nid: serial, etu_id: int, cours_id: int, note: float)
Proposez une solution faisant intervenir un opérateur ensembliste

Sélectionner les étudiants

(identiﬁants) ayant une moyenne SELECT FROM GROUP BY HAVING AVG
super_let{rg d 1(\) mais au moms une SELECT FROM GROUP BY HAVING MIN
note inférieura 7
Sélectionner les étudiants
(identiﬁants) ayant une moyenne SELECT FROM GROUP BY HAVING AVG
supérieur a 10 ou ayant au moins une LY

SELECT FROM GROUP BY HAVING MAX

note supérieure a 15

48/74

Structured Query Language (SQL) :Le produit cartésien et la jointure

- Etu(eid: serial, nom: str, prenom: str, mail: str)
- Cours(cid: serial, titre: str)
- Eval(nid: serial, etu_id: int, cours_id: int, note: float)

En considérant le schéma précédent on aimerait obtenir une relation comprenant le
nom, le prénom, la note et le nom du cours pour chaque étudiant ?

prenom | nom [titre [note
Agathe Zeblouse | Mathématiques 0
Agathe Zeblouse | Bases de données avancées | 18
Agathe Zelouse Anglais 15
Jean Peuplu Mathématiques 15
Jean Peuplu Anglais 6
Odile Huai Bases de données avancées | 5
Paul Hochon Bases de données avancées | 5

Est-il possible avec ce que nous avons déja vu d'obtenir cette relation ?

49/74

Structured Query Language (SQL) :Le produit cartésien et la jointure

- Etu(eid: serial, nom: str, prenom: str, mail: str)

- Cours(cid: serial, titre: str)

- Eval(nid: serial, etu_id: int, cours_id: int, note: float)

En considérant le schéma précédent on aimerait obtenir une relation comprenant le
nom, le prénom, la note et le nom du cours pour chaque étudiant ?

prenom | nom [titre [note
Agathe Zeblouse | Mathématiques 0
Agathe Zeblouse | Bases de données avancées | 18
Agathe Zelouse Anglais 15
Jean Peuplu Mathématiques 15
Jean Peuplu Anglais 6
Odile Huai Bases de données avancées | 5
Paul Hochon Bases de données avancées | 5

Est-il possible avec ce que nous avons déja vu d'obtenir cette

49/74

relation ?— A NON'!

Structured Query Language (SQL) : Le produit cartésien

Le prduit cartésien :

Le produit cartésien entre deux ensemble A et Best noté A x B. SiA = {a;,a,} et
B = {b1,b,} alors:

Structured Query Language (SQL) : Le produit cartésien

Le prduit cartésien :

Le produit cartésien entre deux ensemble A et Best noté A x B. SiA = {a;,a,} et
B = {b1,b,} alors:
AxB= {(a'h b'])a (017 b2)7 (027 bW)'/ (027 bZ)}

C'est a dire 'ensemble des couples !!

Structured Query Language (SQL) : Le produit cartésien

Le prduit cartésien :

Le produit cartésien entre deux ensemble A et Best noté A x B. SiA = {a;,a,} et
B = {b1,b,} alors:
AxB= {(a'h b'])a (017 b2)7 (027 bW)'/ (027 bZ)}

C'est a dire 'ensemble des couples !!

— En SQL c'est pareil !!! Si A et B sont des relations, le produit cartésien sera I'ensemble
des couples d’enregistrements de A et B

Structured Query Language (SQL) : Le produit cartésien

eid [prenom [nom

1 Agathe Zeblouse
2 Odile Huai

X

etu_id | cours_id | note

1 2 0
1 1 18
1 3 15

Quel résultat pour le produit cartésien ?

51/74

Structured Query Language (SQL) : Le produit cartésien

eid [prenom [nom

1 Agathe | Zeblouse eid | prenom | nom etu_id | cours_id | note
2 Odile Hual 1 Agathe | Zeblouse | 1 2 0

X 2 Odile Huai 1 2 0

ﬁ
etu_id | cours_id | note ! Aggthe Zeblpuse ! L 18
2 Odile Huai 1 1 18

L 2 0 1 Agathe Zeblouse | 1 3 15
! L 18 2 | odile | Huai 1 3 15
1 3 15

Quel résultat pour le produit cartésien ?

— Chaque ligne correspond a la note d'un étudiant ?

51/74

Structured Query Language (SQL) : Le produit cartésien

eid [prenom [nom

1 Agathe | Zeblouse eid | prenom | nom etu_id | cours_id | note
2 Odile Hual 1 Agathe | Zeblouse | 1 2 0

X 2 Odile Huai 1 2 0

ﬁ
etu_id | cours_id | note ! Aggthe Zeblpuse ! L 18
2 Odile Huai 1 1 18

L 2 0 1 Agathe Zeblouse | 1 3 15
! L 18 2 | odile | Huai 1 3 15
1 3 15

Quel résultat pour le produit cartésien ?

— Chaque ligne correspond a la note d’un étudiant ? A NON !

51/74

Structured Query Language (SQL) : Le produit cartésien

eid [prenom [nom

1 Agathe | Zeblouse eid | prenom | nom etu_id | cours_id | note
2 Odile Hual 1 Agathe | Zeblouse | 1 2 0

X 2 Odile Huai 1 2 0

ﬁ
etu_id | cours_id | note ! Aggthe Zeblpuse ! L 18
2 Odile Huai 1 1 18

L 2 0 1 Agathe Zeblouse | 1 3 15
! L 18 2 | odile | Huai 1 3 15
1 3 15

Quel résultat pour le produit cartésien ?

— Chaque ligne correspond a la note d’un étudiant ? A NON !

51/74

Structured Query Language (SQL) : Le produit cartésien

eid [prenom [nom

1 Agathe | Zeblouse eid | prenom | nom etu_id | cours_id | note
2 Odile Hual 1 Agathe | Zeblouse | 1 2 0

X 2 Odile Huai 1 2 0

ﬁ
etu_id | cours_id | note ! Aggthe Zeblpuse ! L 18
2 Odile Huai 1 1 18

L 2 0 1 Agathe Zeblouse | 1 3 15
! L 18 2 | odile | Huai 1 3 15
1 3 15

Quel résultat pour le produit cartésien ?

— Chaque ligne correspond a la note d’un étudiant ? A NON !
— Est-il possible avec ce que nous avons déja vu d'obtenir ce résultat ?

51/74

Structured Query Language (SQL) : Le produit cartésien

eid [prenom [nom

1 Agathe | Zeblouse eid | prenom | nom etu_id | cours_id | note
2 Odile Hual 1 Agathe | Zeblouse | 1 2 0

X 2 Odile Huai 1 2 0

ﬁ
etu_id | cours_id | note ! Aggthe Zeblpuse ! L 18
2 Odile Huai 1 1 18

L 2 0 1 Agathe Zeblouse | 1 3 15
! L 18 2 | odile | Huai 1 3 15
1 3 15

Quel résultat pour le produit cartésien ?

— Chaque ligne correspond a la note d’un étudiant ? A NON !
— Est-il possible avec ce que nous avons déja vu d'obtenir ce résultat ? OUI !

51/74

Structured Query Language (SQL) : Le produit cartésien

Produit Cartésien et SQL o ‘ .
En SQL on définie le produit cartesien entre deux relations A et B comme suit :

SELECT FROM
ou bien,
SELECT FROM CROSS JOIN

Il est tout a fait possible de joindre n relations !l!

SELECT FROM CROSS JOIN CROSS JOIN CROSS JOIN

52/74

Structured Query Language (SQL) : Le produit cartésien et la jointure

Comment obtenir une relation comprenant le nom, le prénom, la note et le nom du cours
pour chaque étudiant (une solution avec requéte imbriqué et une sans)? Calcul du
produit cartésien puis filtrage ?

Solution 1

SELECT FROM (SELECT FROM
WHERE AND

Solution 2
SELECT FROM
WHERE AND

il s'agit de la jointure

Structured Query Language (SQL) : Le produit cartésien, compléxité

Si on consideére la requéte suivante
SELECT FROM
Si le nombre d’enregistrement pour chaque relation est le suivant :

+ cours — 100
- eval — 100,000
- etu — 10,000

Quelle est la taille de la relation en sortie de la requéte ?

5474

Structured Query Language (SQL) : Le produit cartésien, compléxité

Si on consideére la requéte suivante
SELECT FROM
Si le nombre d’enregistrement pour chaque relation est le suivant :

+ cours — 100
- eval — 100,000
- etu — 10,000

Quelle est la taille de la relation en sortie de la requéte ? — A 10"

5474

Structured Query Language (SQL) : Jointure

La jointure , , A A
Les jointures en SQL permettent d'associer plusieurs tables dans une méeme requéte.
- CROSS JOIN : Produit cartésien
- INNER JOIN ou JOIN: Association de tables selon les valeurs d'un champs des
relations jointes
- LEFT JOIN: Association de tables selon un champs des relations jointes, si les la
valeur n'apparait pas dans la table 'droite’ les champs associées a la relation droite
sont null
- RIGHT JOIN: Association de tables selon un champs des relations jointes, si les la
valeurs n'apparait pas dans la table 'gauche’ les champs associées a la relation
gauche sont null

Structured Query Language (SQL) : INNER JOIN

INNER JOIN . .
INNER JOIN joint deux tables a partir d'un champs. Cette commande retourne les

enregistrements lorsqu’il y a au moins une ligne dans chaque colonne qui correspond a
la condition.

Quand on parlera de jointure sans préciser nous désignerons la jointure INNER JOIN !!!

Les lignes sont jointes sur les valeurs
présentes dans les deux tables

Structured Query Language (SQL) : INNER JOIN

eid | prenom | nom

1 Agathe Zeblouse
2 Odile Huai

eid | prenom | nom etu_id | cours_id | note
3 Jean Peuplu

1 Agathe Zeblouse | 1 2 0
INNER JOIN (eid=etu_id) 1 Agathe | Zeblouse | 1 1 18
etu_id ‘ cours_id ‘ note 1 Agathe Zeblouse | 1 3 15
1 > 0 2 Odile Huai 2 1 5
1 1 18
1 3 15
2 1 5

57/74

Structured Query Language (SQL) : INNER JOIN

Differentes syntaxes equivalentes . o)]
Soit A et B deux relations, on souhaite faire la jointure sur la colonne 1d de Aet aid de B

SELECT FROM JOIN ON
SELECT FROM INNER JOIN ON
SELECT FROM WHERE

Si on fait la jointure sur les colonnes id de A et id de B on peut utiliser NATURAL JOIN

SELECT FROM NATURAL JOIN

Structured Query Language (SQL) : Exemple

- Etu(eid: serial, nom: str, prenom: str, mail: str)
- Cours(cid: serial, titre: str)
- Eval(nid: serial, etu_id: int, cours_id: int, note: float)

Obtenir la liste des prénoms et des noms Retrouver toutes les notes en retournant le
des étudiants ayant une note supérieure a nom, le prénom de et le cours
10

Structured Query Language (SQL) : Exemple

- Etu(eid: serial, nom: str, prenom: str, mail: str)
- Cours(cid: serial, titre: str)
- Eval(nid: serial, etu_id: int, cours_id: int, note: float)

Obtenir la liste des prénoms et des noms Retrouver toutes les notes en retournant le
des étudiants ayant une note supérieure a nom, le prénom de et le cours
10
SELECT
FROM
WHERE AND

Structured Query Language (SQL) : Exemple

- Etu(eid: serial, nom: str, prenom: str, mail: str)
- Cours(cid: serial, titre: str)

- Eval(nid: serial, etu_id: int, cours_id: int, note: float)

Obtenir la liste des prénoms et des noms Retrouver toutes les notes en retournant le
des étudiants ayant une note supérieure a nom, le prénom de et le cours
10
SELECT
SELECT FROM
FROM WHERE
WHERE AND AND

Structured Query Language (SQL) : LEFT JOIN

Jointure gauche

LEFT JOIN joint deux tables a partir d'un champ. La commande permet de lister tous les
résultats de la table de gauche méme s'il n'y a pas de correspondance dans la deuxiéme
table (les valeurs des colonnes de la table de droite sont nulles lorsque qu'il n'y pas de
correspondances).

Les lignes sont jointes sur les valeurs
présentes dans les deux tables

Structured Query Language (SQL) : LEFT JOIN

Agathe | Zeblouse
Odile Huai - - -
eid | prenom | nom etu_id | cours_id | note
Jean Peuplu
_] 1 Agathe Zeblouse | 1 2 0
LEFT JOIN (eid=etu_id) 1 Agathe | Zeblouse | 1 1 18
etu_id ‘ cours_id ‘ note 1 Agathe Zeblouse | 1 3 15
1 5 0 2 Odile Huai 2 1 5
18 3 Jean Peuplu NULL NULL NULL

1 1
1 3 15
2 1 5

Structured Query Language (SQL) : LEFT JOIN

Differentes syntaxes equivalents o) _
Soit A et B deux relations, on souhaite faire la jointure sur les colonnes id de A et aid de

B

SELECT FROM LEFT JOIN ON

Un exemple _ o
Faire la jointure gauche sur les relations cours et eval et sélectionnez les colonnes

titre, etu_id et note (sur cid=cours_id)

62/74

Structured Query Language (SQL) : LEFT JOIN

Differentes syntaxes equivalents o) _
Soit A et B deux relations, on souhaite faire la jointure sur les colonnes id de A et aid de
B

SELECT FROM LEFT JOIN ON

Un exemple _ o
Faire la jointure gauche sur les relations cours et eval et sélectionnez les colonnes

titre, etu_id et note (sur cid=cours_id)

titre etu_id | note
Bases de données avancées | 1 18
SiaLEer 3ol Mathématiques 1 0
LEFT JOIN ON -
Anglais 1 15
Python NULL NULL

62/74

Structured Query Language (SQL) : Exercices

- Etu(eid: serial, nom: str, prenom: str, mail: str)
- Cours(cid: serial, titre: str)
- Eval(nid: serial, etu_id: int, cours_id: int, note: float)

Obtenir la liste des prénoms et des noms Retrouver toutes les notes manquantes en
des étudiants n‘ayant pas de notes retournant le nom, le prénom de et le cours

Structured Query Language (SQL) : Exercices

- Etu(eid: serial, nom: str, prenom: str, mail: str)
- Cours(cid: serial, titre: str)
- Eval(nid: serial, etu_id: int, cours_id: int, note: float)

Obtenir la liste des prénoms et des noms Retrouver toutes les notes manquantes en
des étudiants n‘ayant pas de notes retournant le nom, le prénom de et le cours
SELECT FROM AS

LEFT JOIN AS ON

WHERE NULL

Structured Query Language (SQL) : Exercices

- Etu(eid: serial, nom: str, prenom: str, mail: str)
- Cours(cid: serial, titre: str)
- Eval(nid: serial, etu_id: int, cours_id: int, note: float)

Obtenir la liste des prénoms et des noms Retrouver toutes les notes manquantes en
des étudiants n‘ayant pas de notes retournant le nom, le prénom de et le cours
et la note
SELECT FROM AS
LEFT JOIN AS N ON SELECT FROM
WHERE NULL CROSS JOIN
LEFT JOIN ON
AND
WHERE NULL

Structured Query Language (SQL): Différentes jointures

INNER JOIN LEFT JOIN RIGHT JOIN
A B A B A B
LEFT JOIN SANS B RIGHT JOIN SANS A

A B

Structured Query Language (SQL) : Jointure

SELECT FROM
WHERE

etu_id cours_id | note |

eid prenom | nom

N 1 2 0
= 1 Agathe | Zeblouse 1 1 18
2 odile | Huai -
3 Jean Peuplu . . =
P 2 1 5

Structured Query Language (SQL) : Jointure

SELECT FROM
WHERE

etu_id cours_id | note |

eid prenom | nom

1 2 0
- 1 Agathe | Zeblouse = 1) 15
2 Odile | Huai —
3 Jean Peuplu L 3 15
P 2 1|5

Structured Query Language (SQL) : Jointure

SELECT FROM
WHERE

etu_id cours_id | note |

eid prenom | nom

1 2 0
= 1 Agathe | Zeblouse 1 1 18
2 odile | Huai -
3 Jean Peuplu - . . =
P 2 1 5

Structured Query Language (SQL) : Jointure

SELECT FROM
WHERE

etu_id cours_id | note |

eid prenom | nom

1 2 0
= 1 Agathe | Zeblouse 1 1 18
2 odile | Huai -
3 Jean Peuplu . . =
P N 2 1 5

Structured Query Language (SQL) : Jointure

SELECT FROM
WHERE

etu_id cours_id | note |

eid prenom | nom

— 1 2 0
1 Agathe | Zeblouse 1) 15
— 2 Odile | Huai —
3 Jean Peuplu L 3 15
P 2 1|5

Structured Query Language (SQL) : Jointure

SELECT FROM
WHERE

etu_id cours_id | note |

eid prenom | nom

1 2 0
- 1 Agathe | Zeblouse = 1) 15
2 Odile | Huai —
3 Jean Peuplu L 3 15
P 2 1|5

Structured Query Language (SQL) : Jointure

Avec l'algorithme précédent

Combien d’itérations ?

Structured Query Language (SQL) : Jointure

Avec l'algorithme précédent

Combien d'itérations ? — 3 x 4 = 12

Structured Query Language (SQL) : Jointure

Avec l'algorithme précédent
Combien d'itérations ? — 3 x 4 =12

Si le nombre de n-uplets dans ney = 100 et gy = 1000
Combien d'itérations ?

Structured Query Language (SQL) : Jointure

Avec l'algorithme précédent
Combien d'itérations ? — 3 x 4 =12

Si le nombre de n-uplets dans ney = 100 et gy = 1000
Combien d'itérations ?
100 x 1.000 = 100.000

Structured Query Language (SQL) : Jointure

Si les différentes relations étaient
des tableaux (dans un langage
quelconques) comment
implémenter la requéte :

Algorithm 1 JOIN

Require: cours, eval, etu
resultat + []
SELECT * FROM for ¢ € cours do
WHERE for n € eval do
AND for e € etu do
if c.cid = n.cid and e.eid = n.eid then
resultat < resultat U (¢, n, d)
end if
end for
end for
end for

— Boucles imbriquées

67/74

Structured Query Language (SQL) : Jointure

Si les différentes relations étaient
des tableaux (dans un langage
quelconques) comment
implémenter la requéte :

Algorithm 2 JOIN

Require: cours, eval, etu
resultat + []
SELECT * FROM for c € cours do

WHERE forn € eval do
AND for e € etu do
if c.cid = n.cid and e.eid = n.eid then
Combien d'itérations ? resultat < resultat U (¢, n, d)
end if
end for
end for

end for

67/74

Structured Query Language (SQL) : Jointure

Si les différentes relations étaient
des tableaux (dans un langage
quelconques) comment
implémenter la requéte :

Algorithm 3 JOIN

Require: cours, eval, etu
resultat + []
SELECT * FROM for c € cours do

Xll\T[)ERE forn € eval do
for e € etu do
if c.cid = n.cid and e.eid = n.eid then
Combien d'itérations ? rgsultat «+ resultat U (c, n, d)
end if
end for
Ncours X Neval X Netuy end for

end for

67/74

Structured Query Language (SQL) : Jointure

Si les différentes relations étaient
des tableaux (dans un langage
quelconques) comment
implémenter la requéte :

Algorithm 4 JOIN

Require: cours, eval, etu
resultat + []

SELECT * FROM for c € cours do

for n € eval do

WHERE
AND for e € etu do
if c.cid = n.cid and e.eid = n.eid then
resultat < resultat U (¢, n, d)
Combien d'itérations ? end if
end for
end for
Ncours X Neval X Nety
end for

Il faut optimiser (Partie Optimisation)

67/74

Structured Query Language (SQL) : Linstruction UDPATE

La mise a jour . N . .
On peut mettre a jour un enregistrement dans la table, en utilisant l'instruction UPDATE:

UPDATE SET WHERE

Modifier la note en mathématiques (cours_id=2) de Agathe Zeblouse (etu_id=1) a 20

UPDATE SET WHERE AND

On peut aussi utiliser des SELECT pour retrouver 'enregistrement

Structured Query Language (SQL) : Linstruction UDPATE

La mise a jour . N ' .
On peut mettre a jour un enregistrement dans la table, en utilisant l'instruction UPDATE:

UPDATE SET WHERE

Modifier la note en mathématiques (cours_id=2) de Agathe Zeblouse (etu_id=1) a 20

UPDATE SET WHERE AND

On peut aussi utiliser des SELECT pour retrouver 'enregistrement

UPDATE SET
WHERE SELECT FROM WHERE 'Zeblouse' AND 'Agathe’
AND SELECT FROM WHERE '"Mathématiques'

Structured Query Language (SQL) : Linstruction UDPATE

Mettre a jour plusieurs enregistrements (exemple)

On peut mettre a jour plusieurs enregistrements en utilisant les valeurs des lignes
retrouvées

Exemple : Enlever deux points a tous les étudiants

Structured Query Language (SQL) : Linstruction UDPATE

Mettre a jour plusieurs enregistrements (exemple)

On peut mettre a jour plusieurs enregistrements en utilisant les valeurs des lignes
retrouvées
Exemple : Enlever deux points a tous les étudiants

UPDATE SET
nom prenom | cours note nom prenom | cours note
Peuplu Jean Mathématiques 15 Peuplu Jean Mathématiques 13
Peuplu Jean Anglais 6 Peuplu Jean Anglais 4
= — -
Zeblouse | Agathe Bases de données .. | 18 Zeblouse | Agathe Bases de données .. | 16
Zeblouse | Agathe Mathématiques 20 Zeblouse | Agathe Mathématiques 18

Structured Query Language (SQL) : Linstruction UDPATE

Pour aller plus loin'!
Il existe d'autre syntaxe fonctionnalités

- Site de PostgreSQLhttps://docs.postgresql.fr/9.6/sql-update.html
- W3Schools https://www.w3schools.com/sql/sql_update.asp

70/74

https://docs.postgresql.fr/9.6/sql-update.html
https://www.w3schools.com/sql/sql_update.asp

Structured Query Language (SQL) : Linstruction DELETE

Suppression d’'un enregistrement - . ,
On peut supprimer un enregistrement dans la table, en utilisant l'instruction DELETE:

DELETE FROM WHERE

Exemple : Supprimer les notes du cours Mathématiques

/74

Structured Query Language (SQL) : Linstruction DELETE

Suppression d’'un enregistrement - . ,
On peut supprimer un enregistrement dans la table, en utilisant l'instruction DELETE:

DELETE FROM WHERE

Exemple : Supprimer les notes du cours Mathématiques

DELETE FROM WHERE SELECT WHERE 'Mathématiques'

/74

Informations supplémentaires

Structured Query Language (SQL) : Autre (pour le TP)

SELECT DISTINCT)
Linstruction SELECT DISTINCT est utilisee pour renvoyer uniqguement les enregistrements

distincts.
SELECT DISTINCT

STRING_AGG . A R o)
La fonction STRING_AGG concatene des chaines de caracteres séparees par un séparateur

spécifié.
Ressources

- Documentation postgreSQL
https://www.postgresql.org/docs/16/index.html

- W3School https://www.w3schools.com/sql

72/74

https://www.postgresql.org/docs/16/index.html
https://www.w3schools.com/sql

Conclusion

Un petit TP a rendre

Objectifs
- Créer une base de données

- Interroger une base de données

Support sur https://thomas-gerald.fr/BD0O/index.html

73/74

https://thomas-gerald.fr/BDO/index.html

Ce qui a été vue
- Initiation au langage SQL
- Les opérations sur les bases de données relationnelles avec SQL

Comment ces opérations sont implémentées dans les SGBDs ?
Comment garantir l'efficacité des opérations ? — Optimisation des SGBDs

74[74

	Le Language de Définition des Données (LDD)
	Le Language de Manipulation des Données (LDD)
	Informations supplémentaires
	Conclusion

