
Bases de Données Avancées
Partie 1 : SQL (Structured Query Language) - Rappel

Thomas Gerald
January 14, 2026

Laboratoire Interdisciplinaire des Sciences du Numérique – LISN, CNRS
thomas.gerald@lisn.upsaclay.fr

Le cours

Partie 1 : SQL (Structured Query Language)

• Le SQL c’est quoi ?
• Définir une relation avec SQL
• Les requêtes SQL

1/74

Structured Query Language (SQL)

SQL, c’est quoi ?

Un langage d’interaction avec les bases de données relationnelles
→ Originellement développés par IBM (projets SEQUEL-XRM et System-R, 1974-1977)
→ Le langage le plus utilisé pour l’interaction avec des bases de données relationnelles
→ Interaction avec des données tabulaires (données sous forme de table)

2/74

Structured Query Language (SQL) : À quel Niveau

On ne s’intéresse pas au stockage des données mais plutôt à un niveau conceptuel des
données (Niveau Logique)!

Niveau Logique
• Le modèle de données/description
• Abstraction par le langage (SQL)

Niveau externe
• Vues (non stocké dans le niveau logique)
• Applications/gestion utilisateurs

Au niveau Logique

→ On ne s’intéresse pas à la structure de stockage !!!

3/74

Structured Query Language (SQL) : À quel Niveau

On ne s’intéresse pas au stockage des données mais plutôt à un niveau conceptuel des
données (Niveau Logique)!

Niveau Logique
• Le modèle de données/description
• Abstraction par le langage (SQL)

Niveau externe
• Vues (non stocké dans le niveau logique)
• Applications/gestion utilisateurs

Au niveau Logique

→ On ne s’intéresse pas à la structure de stockage !!!

3/74

Structured Query Language (SQL) : Les fonctionalités

Différentes parties du langage

• La définition des données (Data definition Langage - DDL) Un sous ensemble pour la
création, la suppression et la modification des définitions des tables et des vues

• Manipulation des données (Data Manipulation Language - DML) Un sous ensemble
du langage permettant de manipuler les données en autorisant l’insertion (INSERT),
la suppression (DELETE), la modification (UPDATE)

• La sécurité des données Contrôle de l’accès des données (utilisateurs, etc...)
• Gestion des transactions Des commandes explicites pour contrôler les transactions
• ...

4/74

Structured Query Language (SQL) : Les fonctionalités

Différentes parties du langage

• La définition des données (Data definition Langage - DDL) Un sous ensemble pour la
création, la suppression et la modification des définitions des tables et des vues

• Manipulation des données (Data Manipulation Language - DML) Un sous ensemble
du langage permettant de manipuler les données en autorisant l’insertion (INSERT),
la suppression (DELETE), la modification (UPDATE)

• La sécurité des données Contrôle de l’accès des données (utilisateurs, etc...)
• Gestion des transactions Des commandes explicites pour contrôler les transactions
• ...

4/74

Structured Query Language (SQL) : Les fonctionalités

Différentes parties du langage

• La définition des données (Data definition Langage - DDL) Un sous ensemble pour la
création, la suppression et la modification des définitions des tables et des vues

• Manipulation des données (Data Manipulation Language - DML) Un sous ensemble
du langage permettant de manipuler les données en autorisant l’insertion (INSERT),
la suppression (DELETE), la modification (UPDATE)

• La sécurité des données Contrôle de l’accès des données (utilisateurs, etc...)

• Gestion des transactions Des commandes explicites pour contrôler les transactions
• ...

4/74

Structured Query Language (SQL) : Les fonctionalités

Différentes parties du langage

• La définition des données (Data definition Langage - DDL) Un sous ensemble pour la
création, la suppression et la modification des définitions des tables et des vues

• Manipulation des données (Data Manipulation Language - DML) Un sous ensemble
du langage permettant de manipuler les données en autorisant l’insertion (INSERT),
la suppression (DELETE), la modification (UPDATE)

• La sécurité des données Contrôle de l’accès des données (utilisateurs, etc...)
• Gestion des transactions Des commandes explicites pour contrôler les transactions

• ...

4/74

Structured Query Language (SQL) : Les fonctionalités

Différentes parties du langage

• La définition des données (Data definition Langage - DDL) Un sous ensemble pour la
création, la suppression et la modification des définitions des tables et des vues

• Manipulation des données (Data Manipulation Language - DML) Un sous ensemble
du langage permettant de manipuler les données en autorisant l’insertion (INSERT),
la suppression (DELETE), la modification (UPDATE)

• La sécurité des données Contrôle de l’accès des données (utilisateurs, etc...)
• Gestion des transactions Des commandes explicites pour contrôler les transactions
• ...

4/74

Structured Query Language (SQL) : Les tables

Tables et SQL

Une table SQL est un objet (une abstraction) qui contient les enregistrements d’une
relation.

etu
nom prenom mail

Zeblouse Agathe az@*****
Huai Odile oh@*****
Peuplu Jean jp@*****
Hochon Paul hp@*****

...
...

...

• Le nom de la relation : etu (pour étudiant)
• Les champs/colonnes : nom, prenom, mail
• Un enregistrement : Une ligne de la table

5/74

Structured Query Language (SQL) : Identifiant d’une ligne

etu
nom prenom mail

Zeblouse Agathe az@*****
Huai Odile oh@*****
Peuplu Jean jp@*****
Hochon Paul hp@*****

...
...

...

Chaque colonne à un identifiant unique
• automatiquement définit :

• ROWID dans oracle→ Un entier unique associé à chaque
ligne

• ctid dans Postgres→ Un couple d’entier (page, numéro
d’entrée)

• définit par le créateur de la base de données
• Une clef primaire→ Un identifiant unique correspondant à
une colonne ou un couple de colonnes définis lors de la
création du schéma

→ Bien souvent un index est automatiquement crée sur la clef primaire pour accélérer la
recherche.

6/74

Structured Query Language (SQL) : Notation

Etu
nom prenom mail

Zeblouse Agathe az@*****
Huai Odile oh@*****
Peuplu Jean jp@*****
Hochon Paul hp@*****

...
...

...

Quelles sont les clefs primaires possibles ?

Etu(nom: str, prenom: str, mail: str)
→ Clef primaire sur le champs mail de type str (chaîne de caractères)

Etu(nom: str, prenom: str, mail: str)
→ Clef primaire sur le champs nom et prenom de type (str, str) (tuple)

Utilisation de chaîne de caractères pour les clefs primaires?
→ souvent plus volumineux
→ ... On préfère dédier un champs numérique pour les clefs primaires (mais ce n’est pas

une obligation)

7/74

Structured Query Language (SQL) : Notation

Etu
nom prenom mail

Zeblouse Agathe az@*****
Huai Odile oh@*****
Peuplu Jean jp@*****
Hochon Paul hp@*****

...
...

...

Quelles sont les clefs primaires possibles ?

Etu(nom: str, prenom: str, mail: str)

→ Clef primaire sur le champs mail de type str (chaîne de caractères)

Etu(nom: str, prenom: str, mail: str)
→ Clef primaire sur le champs nom et prenom de type (str, str) (tuple)

Utilisation de chaîne de caractères pour les clefs primaires?
→ souvent plus volumineux
→ ... On préfère dédier un champs numérique pour les clefs primaires (mais ce n’est pas

une obligation)

7/74

Structured Query Language (SQL) : Notation

Etu
nom prenom mail

Zeblouse Agathe az@*****
Huai Odile oh@*****
Peuplu Jean jp@*****
Hochon Paul hp@*****

...
...

...

Quelles sont les clefs primaires possibles ?

Etu(nom: str, prenom: str, mail: str)
→ Clef primaire sur le champs mail de type str (chaîne de caractères)

Etu(nom: str, prenom: str, mail: str)
→ Clef primaire sur le champs nom et prenom de type (str, str) (tuple)

Utilisation de chaîne de caractères pour les clefs primaires?
→ souvent plus volumineux
→ ... On préfère dédier un champs numérique pour les clefs primaires (mais ce n’est pas

une obligation)

7/74

Structured Query Language (SQL) : Notation

Etu
nom prenom mail

Zeblouse Agathe az@*****
Huai Odile oh@*****
Peuplu Jean jp@*****
Hochon Paul hp@*****

...
...

...

Quelles sont les clefs primaires possibles ?

Etu(nom: str, prenom: str, mail: str)
→ Clef primaire sur le champs mail de type str (chaîne de caractères)

Etu(nom: str, prenom: str, mail: str)

→ Clef primaire sur le champs nom et prenom de type (str, str) (tuple)

Utilisation de chaîne de caractères pour les clefs primaires?
→ souvent plus volumineux
→ ... On préfère dédier un champs numérique pour les clefs primaires (mais ce n’est pas

une obligation)

7/74

Structured Query Language (SQL) : Notation

Etu
nom prenom mail

Zeblouse Agathe az@*****
Huai Odile oh@*****
Peuplu Jean jp@*****
Hochon Paul hp@*****

...
...

...

Quelles sont les clefs primaires possibles ?

Etu(nom: str, prenom: str, mail: str)
→ Clef primaire sur le champs mail de type str (chaîne de caractères)

Etu(nom: str, prenom: str, mail: str)
→ Clef primaire sur le champs nom et prenom de type (str, str) (tuple)

Utilisation de chaîne de caractères pour les clefs primaires?
→ souvent plus volumineux
→ ... On préfère dédier un champs numérique pour les clefs primaires (mais ce n’est pas

une obligation)

7/74

Structured Query Language (SQL) : Notation

Etu
nom prenom mail

Zeblouse Agathe az@*****
Huai Odile oh@*****
Peuplu Jean jp@*****
Hochon Paul hp@*****

...
...

...

Quelles sont les clefs primaires possibles ?

Etu(nom: str, prenom: str, mail: str)
→ Clef primaire sur le champs mail de type str (chaîne de caractères)

Etu(nom: str, prenom: str, mail: str)
→ Clef primaire sur le champs nom et prenom de type (str, str) (tuple)

Utilisation de chaîne de caractères pour les clefs primaires?
→ souvent plus volumineux
→ ...

On préfère dédier un champs numérique pour les clefs primaires (mais ce n’est pas

une obligation)

7/74

Structured Query Language (SQL) : Notation

Etu
nom prenom mail

Zeblouse Agathe az@*****
Huai Odile oh@*****
Peuplu Jean jp@*****
Hochon Paul hp@*****

...
...

...

Quelles sont les clefs primaires possibles ?

Etu(nom: str, prenom: str, mail: str)
→ Clef primaire sur le champs mail de type str (chaîne de caractères)

Etu(nom: str, prenom: str, mail: str)
→ Clef primaire sur le champs nom et prenom de type (str, str) (tuple)

Utilisation de chaîne de caractères pour les clefs primaires?
→ souvent plus volumineux
→ ... On préfère dédier un champs numérique pour les clefs primaires (mais ce n’est pas

une obligation)

7/74

Structured Query Language (SQL) : Notation

Etu
eid nom prenom mail
1 Zeblouse Agathe az@*****
2 Huai Odile oh@*****
3 Peuplu Jean jp@*****
4 Hochon Paul hp@*****
...

...
...

...

Quelles sont les clefs primaires possibles ?

Etu(eid: int,nom: str, prenom: str, mail: str)
→ Clef primaire sur le champs mail de type str (chaîne de caractères)

Etu(eid: int, nom: str, prenom: str, mail: str)
→ Clef primaire sur le champs nom et prenom de type (str, str) (tuple)

Etu(eid: int, nom: str, prenom: str, mail: str)
→ Clef primaire sur le champs eid de type int

8/74

Le Language de Définition des
Données (LDD)

Structured Query Language (SQL) : Définition des données

On utilise le Langage de définition des données, pour définir le schéma des relations

• CREATE : Création du schéma de la relation
• ALTER : Modification du schéma de la relation
• DROP : Suppression d’une relation

9/74

Structured Query Language (SQL) : Création de relation

On souhaite créer la table etu avec le schéma ci-dessous :

Etu(eid: int, nom: str, prenom: str, mail: str)

Comment faire ?

CREATE TABLE etu(-- nom de la table
eid INTEGER, -- un entier
nom VARCHAR(32), -- une string
prenom VARCHAR(32),
mail VARCHAR(128),

)

Et pour spécifier la clef primaire ? → Ajouter une contrainte

10/74

Structured Query Language (SQL) : Création de relation

On souhaite créer la table etu avec le schéma ci-dessous :

Etu(eid: int, nom: str, prenom: str, mail: str)

Comment faire ?

CREATE TABLE etu(-- nom de la table
eid INTEGER, -- un entier
nom VARCHAR(32), -- une string
prenom VARCHAR(32),
mail VARCHAR(128),

)

Et pour spécifier la clef primaire ? → Ajouter une contrainte

10/74

Structured Query Language (SQL) : Création de relation

On souhaite créer la table etu avec le schéma ci-dessous :

Etu(eid: int, nom: str, prenom: str, mail: str)

Comment faire ?

CREATE TABLE etu(-- nom de la table
eid INTEGER, -- un entier
nom VARCHAR(32), -- une string
prenom VARCHAR(32),
mail VARCHAR(128),

)

Et pour spécifier la clef primaire ?

→ Ajouter une contrainte

10/74

Structured Query Language (SQL) : Création de relation

On souhaite créer la table etu avec le schéma ci-dessous :

Etu(eid: int, nom: str, prenom: str, mail: str)

Comment faire ?

CREATE TABLE etu(-- nom de la table
eid INTEGER, -- un entier
nom VARCHAR(32), -- une string
prenom VARCHAR(32),
mail VARCHAR(128),

)

Et pour spécifier la clef primaire ? → Ajouter une contrainte

10/74

Structured Query Language (SQL) : Ajout d’une clef primaire

On peut spécifier la clef primaire, en ajoutant une contrainte:
→ Au moment de la définition:

CONSTRAINT object_key_contraint PRIMARY KEY (x)
↓ ↓ ↓ ↓

Ajout d’une contrainte Le nom de la contrainte le type de contrainte le champ

CREATE TABLE etu(-- nom de la table
eid INTEGER, -- un entier
nom VARCHAR(32), -- une chaîne de caractères
prenom VARCHAR(32),
mail VARCHAR(128),
CONSTRAINT pk_etu PRIMARY KEY (nom, prenom) -- contrainte de clef primaire sur

-- le couple (nom,prenom) nommé pk_etu
)

11/74

Structured Query Language (SQL) : Ajout d’une clef primaire

Dans la suite on va plutôt considérer le schéma suivant pour la relation etu
Etu(eid: int, nom: str, prenom: str, mail: str)

CREATE TABLE etu(-- nom de la table
eid INTEGER, -- un entier
nom VARCHAR(32), -- une chaîne de caractères
prenom VARCHAR(32),
mail VARCHAR(128),
CONSTRAINT pk_etu PRIMARY KEY (eid) -- contrainte de clef primaire sur eid

)

12/74

Structured Query Language (SQL) : Clefs étrangére

On considère deux nouvelles relations définit par:
→ Cours(cid: int, titre: str)
→ Eval(nid: int, etu_id: int, cours_id: integer, note: float)
où le champ etu_id fait référence à la clef primaire de la table Etu :

• Un étudiant peut avoir plusieurs notes
• Si on ajoute un enregistrement dans eval alors la valeur etu_id doit exister dans
Etu (eid existant)

Il s’agit du concept de clef étrangère (Notons que cours pourrait aussi être une clefs
étrangère sur une table)

13/74

Structured Query Language (SQL) : Clefs étrangéres

On peut spécifier la clef étrangère, en ajoutant une contrainte:
→ Au moment de la définition:
CONSTRAINT key_contraint FOREIGN KEY (x) REFERENCES table(y)

↓ ↓ ↓ ↓
nom contrainte type contrainte le champ sur quoi

CREATE TABLE eval(-- nom de la table
nid INTEGER, -- un entier
etu_id INTEGER, -- une chaîne de caractères
cours_id INTEGER,
note FLOAT,
CONSTRAINT pk_note PRIMARY KEY (nid), -- contrainte de clef primaire
CONSTRAINT fk_note_etu FOREIGN KEY(etu_id) REFERENCES etu(eid)

)

� Pour la clef étrangère, le champ référencé doit être unique
→ eid doit être unique dans etu

14/74

Structured Query Language (SQL) : autres contraintes

On peut contraindre certains champs à certaines valeurs, unicité…
Si l’on considère les relations créées précédemment

• Etu(eid: int, nom: str, prenom: str, mail: str)
• Cours(cid: int, titre: str)
• Eval(nid: int, etu_id: int, cours_id: int, note: float)

Quelles contraintes vous semblent légitimes pour la relation Eval ?

• Clef étrangère sur cours_id
• Une contrainte d’unicité sur le couple cours/étudiant (si une note par cours)
• Une contrainte sur la valeur note (entre 0 et 20 par exemple)

Notons que le couple cours_id, etu_id pourrait être une clef primaire

15/74

Structured Query Language (SQL) : autres contraintes

On peut contraindre certains champs à certaines valeurs, unicité…
Si l’on considère les relations créées précédemment

• Etu(eid: int, nom: str, prenom: str, mail: str)
• Cours(cid: int, titre: str)
• Eval(nid: int, etu_id: int, cours_id: int, note: float)

Quelles contraintes vous semblent légitimes pour la relation Eval ?

• Clef étrangère sur cours_id
• Une contrainte d’unicité sur le couple cours/étudiant (si une note par cours)
• Une contrainte sur la valeur note (entre 0 et 20 par exemple)

Notons que le couple cours_id, etu_id pourrait être une clef primaire

15/74

Structured Query Language (SQL) : autres contraintes

On peut contraindre certains champs à certaines valeurs, unicité…
Si l’on considère les relations créées précédemment

• Etu(eid: int, nom: str, prenom: str, mail: str)
• Cours(cid: int, titre: str)
• Eval(nid: int, etu_id: int, cours_id: int, note: float)

Quelles contraintes vous semblent légitimes pour la relation Eval ?

• Clef étrangère sur cours_id
• Une contrainte d’unicité sur le couple cours/étudiant (si une note par cours)
• Une contrainte sur la valeur note (entre 0 et 20 par exemple)

Notons que le couple cours_id, etu_id pourrait être une clef primaire

15/74

Structured Query Language (SQL) : Autres contraintes

• Clef étrangère sur cours_id
• Une contrainte d’unicité sur le couple cours/étudiant (si une note par cours)
• Une contrainte sur la valeur note (entre 0 et 20 par exemple)
• Pas de valeur nulles sur note (pas forcément)

CREATE TABLE eval(-- nom de la table
nid INTEGER, -- un entier
etu_id INTEGER, -- une chaîne de caractère
cours_id INTEGER,
note FLOAT,
CONSTRAINT pk_note PRIMARY KEY (nid), -- contrainte de clef primaire
CONSTRAINT fk_note_etu FOREIGN KEY(etu_id) REFERENCES etu(eid),
CONSTRAINT fk_note_cours FOREIGN KEY(cours_id) REFERENCES cours(cid),
CONSTRAINT u_note_etu_cours UNIQUE(etu_id, cours_id),
CONSTRAINT c_note CHECK (note >= 0 AND note <= 20),
CONSTRAINT nn_note CHECK (note IS NOT NULL)

)

16/74

Structured Query Language (SQL) : Ordre de création des tables

Dans quel ordre ?

• Etu, Eval, Cours

�

• Etu, Cours, Eval �
• Eval, Cours, Etu �

• Eval, Etu, Cours �
• Cours, Etu, Eval �
• Cours, Eval, Etu �

CREATE TABLE etu(
...

); -- plusieurs requête -> ';'
CREATE TABLE cours(

...
);
CREATE TABLE eval(

...
);

→ Ne pas créer la table si ses dépendances n’existent pas
encore !!!

17/74

Structured Query Language (SQL) : Ordre de création des tables

Dans quel ordre ?

• Etu, Eval, Cours �

• Etu, Cours, Eval �
• Eval, Cours, Etu �

• Eval, Etu, Cours �
• Cours, Etu, Eval �
• Cours, Eval, Etu �

CREATE TABLE etu(
...

); -- plusieurs requête -> ';'
CREATE TABLE cours(

...
);
CREATE TABLE eval(

...
);

→ Ne pas créer la table si ses dépendances n’existent pas
encore !!!

17/74

Structured Query Language (SQL) : Ordre de création des tables

Dans quel ordre ?

• Etu, Eval, Cours �
• Etu, Cours, Eval

�

• Eval, Cours, Etu �

• Eval, Etu, Cours �
• Cours, Etu, Eval �
• Cours, Eval, Etu �

CREATE TABLE etu(
...

); -- plusieurs requête -> ';'
CREATE TABLE cours(

...
);
CREATE TABLE eval(

...
);

→ Ne pas créer la table si ses dépendances n’existent pas
encore !!!

17/74

Structured Query Language (SQL) : Ordre de création des tables

Dans quel ordre ?

• Etu, Eval, Cours �
• Etu, Cours, Eval �

• Eval, Cours, Etu �

• Eval, Etu, Cours �
• Cours, Etu, Eval �
• Cours, Eval, Etu �

CREATE TABLE etu(
...

); -- plusieurs requête -> ';'
CREATE TABLE cours(

...
);
CREATE TABLE eval(

...
);

→ Ne pas créer la table si ses dépendances n’existent pas
encore !!!

17/74

Structured Query Language (SQL) : Ordre de création des tables

Dans quel ordre ?

• Etu, Eval, Cours �
• Etu, Cours, Eval �
• Eval, Cours, Etu

�

• Eval, Etu, Cours �
• Cours, Etu, Eval �
• Cours, Eval, Etu �

CREATE TABLE etu(
...

); -- plusieurs requête -> ';'
CREATE TABLE cours(

...
);
CREATE TABLE eval(

...
);

→ Ne pas créer la table si ses dépendances n’existent pas
encore !!!

17/74

Structured Query Language (SQL) : Ordre de création des tables

Dans quel ordre ?

• Etu, Eval, Cours �
• Etu, Cours, Eval �
• Eval, Cours, Etu �

• Eval, Etu, Cours �
• Cours, Etu, Eval �
• Cours, Eval, Etu �

CREATE TABLE etu(
...

); -- plusieurs requête -> ';'
CREATE TABLE cours(

...
);
CREATE TABLE eval(

...
);

→ Ne pas créer la table si ses dépendances n’existent pas
encore !!!

17/74

Structured Query Language (SQL) : Ordre de création des tables

Dans quel ordre ?

• Etu, Eval, Cours �
• Etu, Cours, Eval �
• Eval, Cours, Etu �

• Eval, Etu, Cours

�

• Cours, Etu, Eval �
• Cours, Eval, Etu �

CREATE TABLE etu(
...

); -- plusieurs requête -> ';'
CREATE TABLE cours(

...
);
CREATE TABLE eval(

...
);

→ Ne pas créer la table si ses dépendances n’existent pas
encore !!!

17/74

Structured Query Language (SQL) : Ordre de création des tables

Dans quel ordre ?

• Etu, Eval, Cours �
• Etu, Cours, Eval �
• Eval, Cours, Etu �

• Eval, Etu, Cours �

• Cours, Etu, Eval �
• Cours, Eval, Etu �

CREATE TABLE etu(
...

); -- plusieurs requête -> ';'
CREATE TABLE cours(

...
);
CREATE TABLE eval(

...
);

→ Ne pas créer la table si ses dépendances n’existent pas
encore !!!

17/74

Structured Query Language (SQL) : Ordre de création des tables

Dans quel ordre ?

• Etu, Eval, Cours �
• Etu, Cours, Eval �
• Eval, Cours, Etu �

• Eval, Etu, Cours �
• Cours, Etu, Eval

�

• Cours, Eval, Etu �

CREATE TABLE etu(
...

); -- plusieurs requête -> ';'
CREATE TABLE cours(

...
);
CREATE TABLE eval(

...
);

→ Ne pas créer la table si ses dépendances n’existent pas
encore !!!

17/74

Structured Query Language (SQL) : Ordre de création des tables

Dans quel ordre ?

• Etu, Eval, Cours �
• Etu, Cours, Eval �
• Eval, Cours, Etu �

• Eval, Etu, Cours �
• Cours, Etu, Eval �

• Cours, Eval, Etu �

CREATE TABLE etu(
...

); -- plusieurs requête -> ';'
CREATE TABLE cours(

...
);
CREATE TABLE eval(

...
);

→ Ne pas créer la table si ses dépendances n’existent pas
encore !!!

17/74

Structured Query Language (SQL) : Ordre de création des tables

Dans quel ordre ?

• Etu, Eval, Cours �
• Etu, Cours, Eval �
• Eval, Cours, Etu �

• Eval, Etu, Cours �
• Cours, Etu, Eval �
• Cours, Eval, Etu

�

CREATE TABLE etu(
...

); -- plusieurs requête -> ';'
CREATE TABLE cours(

...
);
CREATE TABLE eval(

...
);

→ Ne pas créer la table si ses dépendances n’existent pas
encore !!!

17/74

Structured Query Language (SQL) : Ordre de création des tables

Dans quel ordre ?

• Etu, Eval, Cours �
• Etu, Cours, Eval �
• Eval, Cours, Etu �

• Eval, Etu, Cours �
• Cours, Etu, Eval �
• Cours, Eval, Etu �

CREATE TABLE etu(
...

); -- plusieurs requête -> ';'
CREATE TABLE cours(

...
);
CREATE TABLE eval(

...
);

→ Ne pas créer la table si ses dépendances n’existent pas
encore !!!

17/74

Structured Query Language (SQL) : Ordre de création des tables

Dans quel ordre ?

• Etu, Eval, Cours �
• Etu, Cours, Eval �
• Eval, Cours, Etu �

• Eval, Etu, Cours �
• Cours, Etu, Eval �
• Cours, Eval, Etu �

CREATE TABLE etu(
...

); -- plusieurs requête -> ';'
CREATE TABLE cours(

...
);
CREATE TABLE eval(

...
);

→ Ne pas créer la table si ses dépendances n’existent pas
encore !!!

17/74

Structured Query Language (SQL) : Ordre de création des tables

Dans quel ordre ?

• Etu, Eval, Cours �
• Etu, Cours, Eval �
• Eval, Cours, Etu �

• Eval, Etu, Cours �
• Cours, Etu, Eval �
• Cours, Eval, Etu �

CREATE TABLE etu(
...

); -- plusieurs requête -> ';'
CREATE TABLE cours(

...
);
CREATE TABLE eval(

...
);

→ Ne pas créer la table si ses dépendances n’existent pas
encore !!!

17/74

Structured Query Language (SQL) : Valeurs par défaut et incrémentation

La contrainte DEFAULT

On peut spécifier des valeurs par défaut:

nom_colonne TYPE DEFAULT valeur

Par exemple si la note par défaut est 0 pour
la relation Eval:

CREATE TABLE eval(
...
note FLOAT DEFAULT .0,
...

)

Le type SERIAL

Associer un compteur à une colonne

nom_colonne SERIAL

Par exemple si on souhaite que la valeur de
nid s’incrémente dans note:

CREATE TABLE Eval(
nid SERIAL,
...

)

� Il s’agit de la méthode pour postgresSQL seulement

18/74

Structured Query Language (SQL) : Valeurs par défaut et incrémentation

La contrainte DEFAULT

On peut spécifier des valeurs par défaut:

nom_colonne TYPE DEFAULT valeur

Par exemple si la note par défaut est 0 pour
la relation Eval:

CREATE TABLE eval(
...
note FLOAT DEFAULT .0,
...

)

Le type SERIAL

Associer un compteur à une colonne

nom_colonne SERIAL

Par exemple si on souhaite que la valeur de
nid s’incrémente dans note:

CREATE TABLE Eval(
nid SERIAL,
...

)

� Il s’agit de la méthode pour postgresSQL seulement

18/74

Structured Query Language (SQL) : Modification avec ALTER

Le mots clef ALTER

Il permet de modifier le schéma d’une relation existante, c’est à dire

• Ajouter/modifier/supprimer un champs
• Ajouter/modifier/supprimer une contrainte
• etc...

On commencera toujours par

ALTER TABLE nom_de_la_table [mon_operation]

19/74

Structured Query Language (SQL) : Modification avec ALTER (exemples)

Suppression d’une colonne ALTER TABLE nom_relation
DROP COLUMN nom_colonne

Modification du type d’une colonne
ALTER TABLE nom_relation
ALTER COLUMN nom_colonne
TYPE type_donnees

Ajouter une contrainte de clef
primaire

ALTER TABLE nom_relation
ADD CONSTRAINT pk_relation
PRIMARY KEY (colonne)

Ajout d’une contrainte sur la valeur
d’une colonne

ALTER TABLE nom_relation
ADD CHECK (nom_colonne>10);

20/74

Structured Query Language (SQL) : Suppression

On peut supprimer une table avec le mot clef DROP :

DROP TABLE nom_table

Si on considère les relations précédentes que se passe t-il si j’execute le code suivant :

DROP TABLE etu

ERROR: constraint fk_note_etu on table \textbf{Eval} depends on table etu...

21/74

Structured Query Language (SQL) : Suppression

On peut supprimer une table avec le mot clef DROP :

DROP TABLE nom_table

Si on considère les relations précédentes que se passe t-il si j’execute le code suivant :

DROP TABLE etu

ERROR: constraint fk_note_etu on table \textbf{Eval} depends on table etu...

21/74

Structured Query Language (SQL) : Suppression

Dans quel ordre ?

• Etu, Eval, Cours

�

• Etu, Cours, Eval �
• Eval, Cours, Etu �

• Eval, Etu, Cours �
• Cours, Etu, Eval �
• Cours, Eval, Etu �

DROP TABLE IF EXISTS eval;
DROP TABLE IF EXISTS cours;
DROP TABLE IF EXISTS etu;

→ Détruire les tables dans l’ordre inverse de création
→ Si un champ de la table A référence un champ de la table B
alors A doit être détruite avant B

22/74

Structured Query Language (SQL) : Suppression

Dans quel ordre ?

• Etu, Eval, Cours �

• Etu, Cours, Eval �
• Eval, Cours, Etu �

• Eval, Etu, Cours �
• Cours, Etu, Eval �
• Cours, Eval, Etu �

DROP TABLE IF EXISTS eval;
DROP TABLE IF EXISTS cours;
DROP TABLE IF EXISTS etu;

→ Détruire les tables dans l’ordre inverse de création
→ Si un champ de la table A référence un champ de la table B
alors A doit être détruite avant B

22/74

Structured Query Language (SQL) : Suppression

Dans quel ordre ?

• Etu, Eval, Cours �
• Etu, Cours, Eval

�

• Eval, Cours, Etu �

• Eval, Etu, Cours �
• Cours, Etu, Eval �
• Cours, Eval, Etu �

DROP TABLE IF EXISTS eval;
DROP TABLE IF EXISTS cours;
DROP TABLE IF EXISTS etu;

→ Détruire les tables dans l’ordre inverse de création
→ Si un champ de la table A référence un champ de la table B
alors A doit être détruite avant B

22/74

Structured Query Language (SQL) : Suppression

Dans quel ordre ?

• Etu, Eval, Cours �
• Etu, Cours, Eval �

• Eval, Cours, Etu �

• Eval, Etu, Cours �
• Cours, Etu, Eval �
• Cours, Eval, Etu �

DROP TABLE IF EXISTS eval;
DROP TABLE IF EXISTS cours;
DROP TABLE IF EXISTS etu;

→ Détruire les tables dans l’ordre inverse de création
→ Si un champ de la table A référence un champ de la table B
alors A doit être détruite avant B

22/74

Structured Query Language (SQL) : Suppression

Dans quel ordre ?

• Etu, Eval, Cours �
• Etu, Cours, Eval �
• Eval, Cours, Etu

�

• Eval, Etu, Cours �
• Cours, Etu, Eval �
• Cours, Eval, Etu �

DROP TABLE IF EXISTS eval;
DROP TABLE IF EXISTS cours;
DROP TABLE IF EXISTS etu;

→ Détruire les tables dans l’ordre inverse de création
→ Si un champ de la table A référence un champ de la table B
alors A doit être détruite avant B

22/74

Structured Query Language (SQL) : Suppression

Dans quel ordre ?

• Etu, Eval, Cours �
• Etu, Cours, Eval �
• Eval, Cours, Etu �

• Eval, Etu, Cours �
• Cours, Etu, Eval �
• Cours, Eval, Etu �

DROP TABLE IF EXISTS eval;
DROP TABLE IF EXISTS cours;
DROP TABLE IF EXISTS etu;

→ Détruire les tables dans l’ordre inverse de création
→ Si un champ de la table A référence un champ de la table B
alors A doit être détruite avant B

22/74

Structured Query Language (SQL) : Suppression

Dans quel ordre ?

• Etu, Eval, Cours �
• Etu, Cours, Eval �
• Eval, Cours, Etu �

• Eval, Etu, Cours

�

• Cours, Etu, Eval �
• Cours, Eval, Etu �

DROP TABLE IF EXISTS eval;
DROP TABLE IF EXISTS cours;
DROP TABLE IF EXISTS etu;

→ Détruire les tables dans l’ordre inverse de création
→ Si un champ de la table A référence un champ de la table B
alors A doit être détruite avant B

22/74

Structured Query Language (SQL) : Suppression

Dans quel ordre ?

• Etu, Eval, Cours �
• Etu, Cours, Eval �
• Eval, Cours, Etu �

• Eval, Etu, Cours �

• Cours, Etu, Eval �
• Cours, Eval, Etu �

DROP TABLE IF EXISTS eval;
DROP TABLE IF EXISTS cours;
DROP TABLE IF EXISTS etu;

→ Détruire les tables dans l’ordre inverse de création
→ Si un champ de la table A référence un champ de la table B
alors A doit être détruite avant B

22/74

Structured Query Language (SQL) : Suppression

Dans quel ordre ?

• Etu, Eval, Cours �
• Etu, Cours, Eval �
• Eval, Cours, Etu �

• Eval, Etu, Cours �
• Cours, Etu, Eval

�

• Cours, Eval, Etu �

DROP TABLE IF EXISTS eval;
DROP TABLE IF EXISTS cours;
DROP TABLE IF EXISTS etu;

→ Détruire les tables dans l’ordre inverse de création
→ Si un champ de la table A référence un champ de la table B
alors A doit être détruite avant B

22/74

Structured Query Language (SQL) : Suppression

Dans quel ordre ?

• Etu, Eval, Cours �
• Etu, Cours, Eval �
• Eval, Cours, Etu �

• Eval, Etu, Cours �
• Cours, Etu, Eval �

• Cours, Eval, Etu �

DROP TABLE IF EXISTS eval;
DROP TABLE IF EXISTS cours;
DROP TABLE IF EXISTS etu;

→ Détruire les tables dans l’ordre inverse de création
→ Si un champ de la table A référence un champ de la table B
alors A doit être détruite avant B

22/74

Structured Query Language (SQL) : Suppression

Dans quel ordre ?

• Etu, Eval, Cours �
• Etu, Cours, Eval �
• Eval, Cours, Etu �

• Eval, Etu, Cours �
• Cours, Etu, Eval �
• Cours, Eval, Etu

�

DROP TABLE IF EXISTS eval;
DROP TABLE IF EXISTS cours;
DROP TABLE IF EXISTS etu;

→ Détruire les tables dans l’ordre inverse de création
→ Si un champ de la table A référence un champ de la table B
alors A doit être détruite avant B

22/74

Structured Query Language (SQL) : Suppression

Dans quel ordre ?

• Etu, Eval, Cours �
• Etu, Cours, Eval �
• Eval, Cours, Etu �

• Eval, Etu, Cours �
• Cours, Etu, Eval �
• Cours, Eval, Etu �

DROP TABLE IF EXISTS eval;
DROP TABLE IF EXISTS cours;
DROP TABLE IF EXISTS etu;

→ Détruire les tables dans l’ordre inverse de création
→ Si un champ de la table A référence un champ de la table B
alors A doit être détruite avant B

22/74

Structured Query Language (SQL) : Suppression

Dans quel ordre ?

• Etu, Eval, Cours �
• Etu, Cours, Eval �
• Eval, Cours, Etu �

• Eval, Etu, Cours �
• Cours, Etu, Eval �
• Cours, Eval, Etu �

DROP TABLE IF EXISTS eval;
DROP TABLE IF EXISTS cours;
DROP TABLE IF EXISTS etu;

→ Détruire les tables dans l’ordre inverse de création
→ Si un champ de la table A référence un champ de la table B
alors A doit être détruite avant B

22/74

Structured Query Language (SQL) : Suppression

Dans quel ordre ?

• Etu, Eval, Cours �
• Etu, Cours, Eval �
• Eval, Cours, Etu �

• Eval, Etu, Cours �
• Cours, Etu, Eval �
• Cours, Eval, Etu �

DROP TABLE IF EXISTS eval;
DROP TABLE IF EXISTS cours;
DROP TABLE IF EXISTS etu;

→ Détruire les tables dans l’ordre inverse de création
→ Si un champ de la table A référence un champ de la table B
alors A doit être détruite avant B

22/74

Structured Query Language (SQL) : LDD - conclusion

Le langage de définition des données

Le LDD (où DDL), permet de définir la structure des tables :

• Le nom des colonnes
• Le type des colonnes
• Les contraintes
• La création, la modification et la suppression des tables, des colonnes ou des
contraintes

Comment manipuler les données de la relation ?
↓

Le langage de Manipulation des données

23/74

Structured Query Language (SQL) : LDD - conclusion

Le langage de définition des données

Le LDD (où DDL), permet de définir la structure des tables :

• Le nom des colonnes
• Le type des colonnes
• Les contraintes
• La création, la modification et la suppression des tables, des colonnes ou des
contraintes

Comment manipuler les données de la relation ?

↓
Le langage de Manipulation des données

23/74

Structured Query Language (SQL) : LDD - conclusion

Le langage de définition des données

Le LDD (où DDL), permet de définir la structure des tables :

• Le nom des colonnes
• Le type des colonnes
• Les contraintes
• La création, la modification et la suppression des tables, des colonnes ou des
contraintes

Comment manipuler les données de la relation ?
↓

Le langage de Manipulation des données

23/74

Le Language de Manipulation des
Données (LDD)

Structured Query Language (SQL) : Le LMD

Le LMD

Le langage de manipulation des données (LMD ou DML en anglais pour data
manipulation language) est un langage permettant d’ajouter, supprimer, modifier ou
rechercher des données. Une sous-partie du langage SQL définie les opérations du LMD,
en particulier via les instructions :

• INSERT pour insérer de nouveaux enregistrements
• SELECT pour sélectionner certains enregistrements et colonnes
• DELETE pour supprimer des enregistrements
• UPDATE pour mettre un jour des enregistrements

24/74

Structured Query Language (SQL) : L’instruction INSERT

INSERT INTO nom_table (nom_col1, nom_col2) VALUES (val_col1, val_col2, …)
↓ ↓ ↓

dans la table sur les colonnes les valeurs

Précisions

• Les chaînes de caractères sont délimitées par des guillemets simples
→ 'ma_chaine'

• Si l’on conserve l’ordre des colonnes il n’est pas nécessaire de spécifier les noms
• Certaines colonnes ne sont pas obligatoirement spécifiées

→ pour les colonnes ayant une valeur par défaut ou s’incrémentant automatiquement

• Sur certains SGBD on peut ajouter plusieurs enregistrements
→ …VALUES (val_col1_e1, val_col2_e1, …), (val_col1_e2, val_col2_e2, …)

25/74

Structured Query Language (SQL) : L’instruction INSERT

INSERT INTO nom_table (nom_col1, nom_col2) VALUES (val_col1, val_col2, …)
↓ ↓ ↓

dans la table sur les colonnes les valeurs

Précisions

• Les chaînes de caractères sont délimitées par des guillemets simples
→ 'ma_chaine'

• Si l’on conserve l’ordre des colonnes il n’est pas nécessaire de spécifier les noms
• Certaines colonnes ne sont pas obligatoirement spécifiées

→ pour les colonnes ayant une valeur par défaut ou s’incrémentant automatiquement

• Sur certains SGBD on peut ajouter plusieurs enregistrements
→ …VALUES (val_col1_e1, val_col2_e1, …), (val_col1_e2, val_col2_e2, …)

25/74

Structured Query Language (SQL) : L’instruction INSERT

INSERT INTO nom_table (nom_col1, nom_col2) VALUES (val_col1, val_col2, …)
↓ ↓ ↓

dans la table sur les colonnes les valeurs

Précisions

• Les chaînes de caractères sont délimitées par des guillemets simples
→ 'ma_chaine'

• Si l’on conserve l’ordre des colonnes il n’est pas nécessaire de spécifier les noms

• Certaines colonnes ne sont pas obligatoirement spécifiées
→ pour les colonnes ayant une valeur par défaut ou s’incrémentant automatiquement

• Sur certains SGBD on peut ajouter plusieurs enregistrements
→ …VALUES (val_col1_e1, val_col2_e1, …), (val_col1_e2, val_col2_e2, …)

25/74

Structured Query Language (SQL) : L’instruction INSERT

INSERT INTO nom_table (nom_col1, nom_col2) VALUES (val_col1, val_col2, …)
↓ ↓ ↓

dans la table sur les colonnes les valeurs

Précisions

• Les chaînes de caractères sont délimitées par des guillemets simples
→ 'ma_chaine'

• Si l’on conserve l’ordre des colonnes il n’est pas nécessaire de spécifier les noms
• Certaines colonnes ne sont pas obligatoirement spécifiées

→ pour les colonnes ayant une valeur par défaut ou s’incrémentant automatiquement

• Sur certains SGBD on peut ajouter plusieurs enregistrements
→ …VALUES (val_col1_e1, val_col2_e1, …), (val_col1_e2, val_col2_e2, …)

25/74

Structured Query Language (SQL) : L’instruction INSERT

INSERT INTO nom_table (nom_col1, nom_col2) VALUES (val_col1, val_col2, …)
↓ ↓ ↓

dans la table sur les colonnes les valeurs

Précisions

• Les chaînes de caractères sont délimitées par des guillemets simples
→ 'ma_chaine'

• Si l’on conserve l’ordre des colonnes il n’est pas nécessaire de spécifier les noms
• Certaines colonnes ne sont pas obligatoirement spécifiées

→ pour les colonnes ayant une valeur par défaut ou s’incrémentant automatiquement

• Sur certains SGBD on peut ajouter plusieurs enregistrements
→ …VALUES (val_col1_e1, val_col2_e1, …), (val_col1_e2, val_col2_e2, …)

25/74

Structured Query Language (SQL) : L’instruction INSERT (exemple)

• Etu(eid: serial, nom: str, prenom: str, mail: str)
• Cours(cid: serial, titre: str)
• Eval(nid: serial, etu_id: int, cours_id: int, note: float)

→ Ajout de l’étudiant GATOR Ali (adresse mail ag@mail.com)

INSERT INTO etu VALUES ('Ali', 'GATOR', 'ag@mail.com') �

INSERT INTO etu VALUES (1, 'GATOR', 'Ali', 'ag@mail.com') �

INSERT INTO etu (prenom, nom, mail) VALUES ('Ali', 'GATOR', 'ag@mail.com') �

INSERT INTO etu (eid, prenom, nom, mail) VALUES (1, 'Ali', 'GATOR', 'ag@mail.com') �

On préférera la 3éme option

26/74

Structured Query Language (SQL) : L’instruction INSERT (exemple)

• Etu(eid: serial, nom: str, prenom: str, mail: str)
• Cours(cid: serial, titre: str)
• Eval(nid: serial, etu_id: int, cours_id: int, note: float)

→ Ajout de l’étudiant GATOR Ali (adresse mail ag@mail.com)

INSERT INTO etu VALUES ('Ali', 'GATOR', 'ag@mail.com') �

INSERT INTO etu VALUES (1, 'GATOR', 'Ali', 'ag@mail.com') �

INSERT INTO etu (prenom, nom, mail) VALUES ('Ali', 'GATOR', 'ag@mail.com') �

INSERT INTO etu (eid, prenom, nom, mail) VALUES (1, 'Ali', 'GATOR', 'ag@mail.com') �

On préférera la 3éme option

26/74

Structured Query Language (SQL) : L’instruction INSERT (exemple)

• Etu(eid: serial, nom: str, prenom: str, mail: str)
• Cours(cid: serial, titre: str)
• Eval(nid: serial, etu_id: int, cours_id: int, note: float)

→ Ajout de l’étudiant GATOR Ali (adresse mail ag@mail.com)

INSERT INTO etu VALUES ('Ali', 'GATOR', 'ag@mail.com')

�

INSERT INTO etu VALUES (1, 'GATOR', 'Ali', 'ag@mail.com') �

INSERT INTO etu (prenom, nom, mail) VALUES ('Ali', 'GATOR', 'ag@mail.com') �

INSERT INTO etu (eid, prenom, nom, mail) VALUES (1, 'Ali', 'GATOR', 'ag@mail.com') �

On préférera la 3éme option

26/74

Structured Query Language (SQL) : L’instruction INSERT (exemple)

• Etu(eid: serial, nom: str, prenom: str, mail: str)
• Cours(cid: serial, titre: str)
• Eval(nid: serial, etu_id: int, cours_id: int, note: float)

→ Ajout de l’étudiant GATOR Ali (adresse mail ag@mail.com)

INSERT INTO etu VALUES ('Ali', 'GATOR', 'ag@mail.com') �

INSERT INTO etu VALUES (1, 'GATOR', 'Ali', 'ag@mail.com') �

INSERT INTO etu (prenom, nom, mail) VALUES ('Ali', 'GATOR', 'ag@mail.com') �

INSERT INTO etu (eid, prenom, nom, mail) VALUES (1, 'Ali', 'GATOR', 'ag@mail.com') �

On préférera la 3éme option

26/74

Structured Query Language (SQL) : L’instruction INSERT (exemple)

• Etu(eid: serial, nom: str, prenom: str, mail: str)
• Cours(cid: serial, titre: str)
• Eval(nid: serial, etu_id: int, cours_id: int, note: float)

→ Ajout de l’étudiant GATOR Ali (adresse mail ag@mail.com)

INSERT INTO etu VALUES ('Ali', 'GATOR', 'ag@mail.com') �

INSERT INTO etu VALUES (1, 'GATOR', 'Ali', 'ag@mail.com')

�

INSERT INTO etu (prenom, nom, mail) VALUES ('Ali', 'GATOR', 'ag@mail.com') �

INSERT INTO etu (eid, prenom, nom, mail) VALUES (1, 'Ali', 'GATOR', 'ag@mail.com') �

On préférera la 3éme option

26/74

Structured Query Language (SQL) : L’instruction INSERT (exemple)

• Etu(eid: serial, nom: str, prenom: str, mail: str)
• Cours(cid: serial, titre: str)
• Eval(nid: serial, etu_id: int, cours_id: int, note: float)

→ Ajout de l’étudiant GATOR Ali (adresse mail ag@mail.com)

INSERT INTO etu VALUES ('Ali', 'GATOR', 'ag@mail.com') �

INSERT INTO etu VALUES (1, 'GATOR', 'Ali', 'ag@mail.com') �

INSERT INTO etu (prenom, nom, mail) VALUES ('Ali', 'GATOR', 'ag@mail.com') �

INSERT INTO etu (eid, prenom, nom, mail) VALUES (1, 'Ali', 'GATOR', 'ag@mail.com') �

On préférera la 3éme option

26/74

Structured Query Language (SQL) : L’instruction INSERT (exemple)

• Etu(eid: serial, nom: str, prenom: str, mail: str)
• Cours(cid: serial, titre: str)
• Eval(nid: serial, etu_id: int, cours_id: int, note: float)

→ Ajout de l’étudiant GATOR Ali (adresse mail ag@mail.com)

INSERT INTO etu VALUES ('Ali', 'GATOR', 'ag@mail.com') �

INSERT INTO etu VALUES (1, 'GATOR', 'Ali', 'ag@mail.com') �

INSERT INTO etu (prenom, nom, mail) VALUES ('Ali', 'GATOR', 'ag@mail.com')

�

INSERT INTO etu (eid, prenom, nom, mail) VALUES (1, 'Ali', 'GATOR', 'ag@mail.com') �

On préférera la 3éme option

26/74

Structured Query Language (SQL) : L’instruction INSERT (exemple)

• Etu(eid: serial, nom: str, prenom: str, mail: str)
• Cours(cid: serial, titre: str)
• Eval(nid: serial, etu_id: int, cours_id: int, note: float)

→ Ajout de l’étudiant GATOR Ali (adresse mail ag@mail.com)

INSERT INTO etu VALUES ('Ali', 'GATOR', 'ag@mail.com') �

INSERT INTO etu VALUES (1, 'GATOR', 'Ali', 'ag@mail.com') �

INSERT INTO etu (prenom, nom, mail) VALUES ('Ali', 'GATOR', 'ag@mail.com') �

INSERT INTO etu (eid, prenom, nom, mail) VALUES (1, 'Ali', 'GATOR', 'ag@mail.com') �

On préférera la 3éme option

26/74

Structured Query Language (SQL) : L’instruction INSERT (exemple)

• Etu(eid: serial, nom: str, prenom: str, mail: str)
• Cours(cid: serial, titre: str)
• Eval(nid: serial, etu_id: int, cours_id: int, note: float)

→ Ajout de l’étudiant GATOR Ali (adresse mail ag@mail.com)

INSERT INTO etu VALUES ('Ali', 'GATOR', 'ag@mail.com') �

INSERT INTO etu VALUES (1, 'GATOR', 'Ali', 'ag@mail.com') �

INSERT INTO etu (prenom, nom, mail) VALUES ('Ali', 'GATOR', 'ag@mail.com') �

INSERT INTO etu (eid, prenom, nom, mail) VALUES (1, 'Ali', 'GATOR', 'ag@mail.com')

�

On préférera la 3éme option

26/74

Structured Query Language (SQL) : L’instruction INSERT (exemple)

• Etu(eid: serial, nom: str, prenom: str, mail: str)
• Cours(cid: serial, titre: str)
• Eval(nid: serial, etu_id: int, cours_id: int, note: float)

→ Ajout de l’étudiant GATOR Ali (adresse mail ag@mail.com)

INSERT INTO etu VALUES ('Ali', 'GATOR', 'ag@mail.com') �

INSERT INTO etu VALUES (1, 'GATOR', 'Ali', 'ag@mail.com') �

INSERT INTO etu (prenom, nom, mail) VALUES ('Ali', 'GATOR', 'ag@mail.com') �

INSERT INTO etu (eid, prenom, nom, mail) VALUES (1, 'Ali', 'GATOR', 'ag@mail.com') �

On préférera la 3éme option

26/74

Structured Query Language (SQL) : L’instruction INSERT (exemple)

Etu
eid nom prenom mail
1 Zeblouse Agathe az@*****
2 Huai Odile oh@*****
3 Peuplu Jean jp@*****
4 Hochon Paul hp@*****
5 Gator Ali ag@*****

Cours
cid titre
1 Bases de données avancées
2 Mathématiques
3 Anglais

CREATE TABLE eval(
nid SERIAL,
etu_id INTEGER,
cours_id INTEGER,
note FLOAT DEFAULT .0,
CONSTRAINT pk_note PRIMARY KEY (nid),
CONSTRAINT fk_note_etu FOREIGN KEY(etu_id) REFERENCES
etu(eid),
CONSTRAINT fk_note_cours FOREIGN KEY(cours_id)
REFERENCES cours(cid),
CONSTRAINT u_note_etu_cours UNIQUE(etu_id, cours_id),
CONSTRAINT c_note CHECK (note >= 0 AND note <= 20),

)

27/74

Structured Query Language (SQL) : L’instruction INSERT (exemple)

INSERT INTO eval (etu_id, cours_id)
VALUES (1, 2);

Quelle est la valeur de l’enregistrement
ajouté ?

nid etu_id cours_id note
1 1 2 0

INSERT INTO eval (etu_id, cours_id, note)
VALUES (1, 2, 18);

Que se passe t-il ?

ERROR: Key (etu_id, cours_id)=(1, 2) already
exists.duplicate key value violates unique
constraint "u_note_etu_cours"

INSERT INTO Eval (etu_id, cours_id, note)
VALUES (1, 7, 15);

Que se passe t-il ?

ERROR: Key (cours_id)=(7) is not present in table
"cours".insert or update on table "eval" violates
foreign key constraint "fk_note_cours"

28/74

Structured Query Language (SQL) : L’instruction INSERT (exemple)

INSERT INTO eval (etu_id, cours_id)
VALUES (1, 2);

Quelle est la valeur de l’enregistrement
ajouté ?

nid etu_id cours_id note
1 1 2 0

INSERT INTO eval (etu_id, cours_id, note)
VALUES (1, 2, 18);

Que se passe t-il ?

ERROR: Key (etu_id, cours_id)=(1, 2) already
exists.duplicate key value violates unique
constraint "u_note_etu_cours"

INSERT INTO Eval (etu_id, cours_id, note)
VALUES (1, 7, 15);

Que se passe t-il ?

ERROR: Key (cours_id)=(7) is not present in table
"cours".insert or update on table "eval" violates
foreign key constraint "fk_note_cours"

28/74

Structured Query Language (SQL) : L’instruction INSERT (exemple)

INSERT INTO eval (etu_id, cours_id)
VALUES (1, 2);

Quelle est la valeur de l’enregistrement
ajouté ?

nid etu_id cours_id note
1 1 2 0

INSERT INTO eval (etu_id, cours_id, note)
VALUES (1, 2, 18);

Que se passe t-il ?

ERROR: Key (etu_id, cours_id)=(1, 2) already
exists.duplicate key value violates unique
constraint "u_note_etu_cours"

INSERT INTO Eval (etu_id, cours_id, note)
VALUES (1, 7, 15);

Que se passe t-il ?

ERROR: Key (cours_id)=(7) is not present in table
"cours".insert or update on table "eval" violates
foreign key constraint "fk_note_cours"

28/74

Structured Query Language (SQL) : L’instruction INSERT (exemple)

INSERT INTO eval (etu_id, cours_id)
VALUES (1, 2);

Quelle est la valeur de l’enregistrement
ajouté ?

nid etu_id cours_id note
1 1 2 0

INSERT INTO eval (etu_id, cours_id, note)
VALUES (1, 2, 18);

Que se passe t-il ?

ERROR: Key (etu_id, cours_id)=(1, 2) already
exists.duplicate key value violates unique
constraint "u_note_etu_cours"

INSERT INTO Eval (etu_id, cours_id, note)
VALUES (1, 7, 15);

Que se passe t-il ?

ERROR: Key (cours_id)=(7) is not present in table
"cours".insert or update on table "eval" violates
foreign key constraint "fk_note_cours"

28/74

Structured Query Language (SQL) : L’instruction INSERT (exemple)

INSERT INTO eval (etu_id, cours_id)
VALUES (1, 2);

Quelle est la valeur de l’enregistrement
ajouté ?

nid etu_id cours_id note
1 1 2 0

INSERT INTO eval (etu_id, cours_id, note)
VALUES (1, 2, 18);

Que se passe t-il ?

ERROR: Key (etu_id, cours_id)=(1, 2) already
exists.duplicate key value violates unique
constraint "u_note_etu_cours"

INSERT INTO Eval (etu_id, cours_id, note)
VALUES (1, 7, 15);

Que se passe t-il ?

ERROR: Key (cours_id)=(7) is not present in table
"cours".insert or update on table "eval" violates
foreign key constraint "fk_note_cours"

28/74

Structured Query Language (SQL) : L’instruction INSERT (exemple)

INSERT INTO eval (etu_id, cours_id)
VALUES (1, 2);

Quelle est la valeur de l’enregistrement
ajouté ?

nid etu_id cours_id note
1 1 2 0

INSERT INTO eval (etu_id, cours_id, note)
VALUES (1, 2, 18);

Que se passe t-il ?

ERROR: Key (etu_id, cours_id)=(1, 2) already
exists.duplicate key value violates unique
constraint "u_note_etu_cours"

INSERT INTO Eval (etu_id, cours_id, note)
VALUES (1, 7, 15);

Que se passe t-il ?

ERROR: Key (cours_id)=(7) is not present in table
"cours".insert or update on table "eval" violates
foreign key constraint "fk_note_cours"

28/74

Structured Query Language (SQL) : L’instruction SELECT

SELECT colonne1, colonne2, … FROM nom_table WHERE condition
↓ ↓ ↓ ↓ ↓ ↓

Sélection des colonnes 1 et 2 sur la table où une condition

→ SELECT pour informer que l’on souhaite “extraire” des enregistrements/colonnes
→ FROM on spécifie la ou les relations dans lesquelles se trouvent les enregistrements
→ WHERE [condition] on filtre les enregistrements à partir des valeurs d’un ou des
champs

29/74

Structured Query Language (SQL) : Sélection des champs

On considère les relations précédentes

Sélectionner le champ note de la table eval →

SELECT note From eval;

sélectionner le champ note et nid de la table eval → SELECT nid, note From eval;

Sélectionner tous les champs de la table eval → SELECT * From eval;

30/74

Structured Query Language (SQL) : Sélection des champs

On considère les relations précédentes

Sélectionner le champ note de la table eval → SELECT note From eval;

sélectionner le champ note et nid de la table eval → SELECT nid, note From eval;

Sélectionner tous les champs de la table eval → SELECT * From eval;

30/74

Structured Query Language (SQL) : Sélection des champs

On considère les relations précédentes

Sélectionner le champ note de la table eval → SELECT note From eval;

sélectionner le champ note et nid de la table eval →

SELECT nid, note From eval;

Sélectionner tous les champs de la table eval → SELECT * From eval;

30/74

Structured Query Language (SQL) : Sélection des champs

On considère les relations précédentes

Sélectionner le champ note de la table eval → SELECT note From eval;

sélectionner le champ note et nid de la table eval → SELECT nid, note From eval;

Sélectionner tous les champs de la table eval → SELECT * From eval;

30/74

Structured Query Language (SQL) : Sélection des champs

On considère les relations précédentes

Sélectionner le champ note de la table eval → SELECT note From eval;

sélectionner le champ note et nid de la table eval → SELECT nid, note From eval;

Sélectionner tous les champs de la table eval →

SELECT * From eval;

30/74

Structured Query Language (SQL) : Sélection des champs

On considère les relations précédentes

Sélectionner le champ note de la table eval → SELECT note From eval;

sélectionner le champ note et nid de la table eval → SELECT nid, note From eval;

Sélectionner tous les champs de la table eval → SELECT * From eval;

30/74

Structured Query Language (SQL) : Alias

Si SELECT * FROM cours retourne la relation
suivante :
cid titre
1 Bases de données avancées
2 Mathématiques
3 Anglais

−→

Comment faire pour obtenir le résultat
ci-dessous ?
Numero Intitule_du_cours

1 Bases de données avancées
2 Mathématiques
3 Anglais

Utilisation d’un alias (renommage dans le retour de la sélection)

SELECT cid AS Numero, titre AS Intitule_du_cours FROM cours

� Les noms des colonnes ne sont pas modifiés dans la relation

31/74

Structured Query Language (SQL) : Alias

Si SELECT * FROM cours retourne la relation
suivante :
cid titre
1 Bases de données avancées
2 Mathématiques
3 Anglais

−→

Comment faire pour obtenir le résultat
ci-dessous ?
Numero Intitule_du_cours

1 Bases de données avancées
2 Mathématiques
3 Anglais

Utilisation d’un alias (renommage dans le retour de la sélection)

SELECT cid AS Numero, titre AS Intitule_du_cours FROM cours

� Les noms des colonnes ne sont pas modifiés dans la relation

31/74

Structured Query Language (SQL) : Les conditions

Comment sélectionner conditionnellement à des valeurs ?
WHERE colonne_ou_valeur OPÉRATEUR colonne_ou_valeur_ou_sous_requête

Opérateurs

→ Les opérateurs <,>,≤,≥,=, ! =

→ L’opérateur IN par exemple col1 IN (val1, val2, ..., valn)
→ Les opérateurs de comparaison de chaînes de caractères (LIKE)

32/74

Structured Query Language (SQL) : Les conditions

Comment sélectionner conditionnellement à des valeurs ?
WHERE colonne_ou_valeur OPÉRATEUR colonne_ou_valeur_ou_sous_requête

Opérateurs

→ Les opérateurs <,>,≤,≥,=, ! =

→ L’opérateur IN par exemple col1 IN (val1, val2, ..., valn)
→ Les opérateurs de comparaison de chaînes de caractères (LIKE)

32/74

Structured Query Language (SQL) : Les conditions

Comment sélectionner conditionnellement à des valeurs ?
WHERE colonne_ou_valeur OPÉRATEUR colonne_ou_valeur_ou_sous_requête

Opérateurs

→ Les opérateurs <,>,≤,≥,=, ! =

→ L’opérateur IN par exemple col1 IN (val1, val2, ..., valn)

→ Les opérateurs de comparaison de chaînes de caractères (LIKE)

32/74

Structured Query Language (SQL) : Les conditions

Comment sélectionner conditionnellement à des valeurs ?
WHERE colonne_ou_valeur OPÉRATEUR colonne_ou_valeur_ou_sous_requête

Opérateurs

→ Les opérateurs <,>,≤,≥,=, ! =

→ L’opérateur IN par exemple col1 IN (val1, val2, ..., valn)
→ Les opérateurs de comparaison de chaînes de caractères (LIKE)

32/74

Structured Query Language (SQL) : Les conditions (exemples)

Sélectionner les étudiants et les cours où
l’étudiant a eu une note supérieure à 15

→ SELECT etu_id, cours_id FROM eval
WHERE note > 15;

Sélectionner le prénom de l’étudiant de nom
“Gator”

→ SELECT prenom FROM etu
WHERE nom = 'Gator'

Sélectionner les étudiants dont le nom
commence par la lettre “H”

→ SELECT prenom FROM etu
WHERE nom LIKE 'H%'

Sélectionner les eid des étudiants avec le
prénom Agathe ou Odile

→ SELECT eid FROM etu
WHERE prenom IN ('Agathe', 'Odile')

33/74

Structured Query Language (SQL) : Les conditions (exemples)

Sélectionner les étudiants et les cours où
l’étudiant a eu une note supérieure à 15

→ SELECT etu_id, cours_id FROM eval
WHERE note > 15;

Sélectionner le prénom de l’étudiant de nom
“Gator”

→ SELECT prenom FROM etu
WHERE nom = 'Gator'

Sélectionner les étudiants dont le nom
commence par la lettre “H”

→ SELECT prenom FROM etu
WHERE nom LIKE 'H%'

Sélectionner les eid des étudiants avec le
prénom Agathe ou Odile

→ SELECT eid FROM etu
WHERE prenom IN ('Agathe', 'Odile')

33/74

Structured Query Language (SQL) : Les conditions (exemples)

Sélectionner les étudiants et les cours où
l’étudiant a eu une note supérieure à 15

→ SELECT etu_id, cours_id FROM eval
WHERE note > 15;

Sélectionner le prénom de l’étudiant de nom
“Gator”

→ SELECT prenom FROM etu
WHERE nom = 'Gator'

Sélectionner les étudiants dont le nom
commence par la lettre “H”

→ SELECT prenom FROM etu
WHERE nom LIKE 'H%'

Sélectionner les eid des étudiants avec le
prénom Agathe ou Odile

→ SELECT eid FROM etu
WHERE prenom IN ('Agathe', 'Odile')

33/74

Structured Query Language (SQL) : Les conditions (exemples)

Sélectionner les étudiants et les cours où
l’étudiant a eu une note supérieure à 15

→ SELECT etu_id, cours_id FROM eval
WHERE note > 15;

Sélectionner le prénom de l’étudiant de nom
“Gator”

→ SELECT prenom FROM etu
WHERE nom = 'Gator'

Sélectionner les étudiants dont le nom
commence par la lettre “H”

→ SELECT prenom FROM etu
WHERE nom LIKE 'H%'

Sélectionner les eid des étudiants avec le
prénom Agathe ou Odile

→ SELECT eid FROM etu
WHERE prenom IN ('Agathe', 'Odile')

33/74

Structured Query Language (SQL) : Les conditions (exemples)

Sélectionner les étudiants et les cours où
l’étudiant a eu une note supérieure à 15

→ SELECT etu_id, cours_id FROM eval
WHERE note > 15;

Sélectionner le prénom de l’étudiant de nom
“Gator”

→ SELECT prenom FROM etu
WHERE nom = 'Gator'

Sélectionner les étudiants dont le nom
commence par la lettre “H”

→ SELECT prenom FROM etu
WHERE nom LIKE 'H%'

Sélectionner les eid des étudiants avec le
prénom Agathe ou Odile

→ SELECT eid FROM etu
WHERE prenom IN ('Agathe', 'Odile')

33/74

Structured Query Language (SQL) : Les conditions (exemples)

Sélectionner les étudiants et les cours où
l’étudiant a eu une note supérieure à 15

→ SELECT etu_id, cours_id FROM eval
WHERE note > 15;

Sélectionner le prénom de l’étudiant de nom
“Gator”

→ SELECT prenom FROM etu
WHERE nom = 'Gator'

Sélectionner les étudiants dont le nom
commence par la lettre “H”

→ SELECT prenom FROM etu
WHERE nom LIKE 'H%'

Sélectionner les eid des étudiants avec le
prénom Agathe ou Odile

→ SELECT eid FROM etu
WHERE prenom IN ('Agathe', 'Odile')

33/74

Structured Query Language (SQL) : Les conditions (exemples)

Sélectionner les étudiants et les cours où
l’étudiant a eu une note supérieure à 15

→ SELECT etu_id, cours_id FROM eval
WHERE note > 15;

Sélectionner le prénom de l’étudiant de nom
“Gator”

→ SELECT prenom FROM etu
WHERE nom = 'Gator'

Sélectionner les étudiants dont le nom
commence par la lettre “H”

→ SELECT prenom FROM etu
WHERE nom LIKE 'H%'

Sélectionner les eid des étudiants avec le
prénom Agathe ou Odile

→ SELECT eid FROM etu
WHERE prenom IN ('Agathe', 'Odile')

33/74

Structured Query Language (SQL) : Les conditions (exemples)

Sélectionner les étudiants et les cours où
l’étudiant a eu une note supérieure à 15

→ SELECT etu_id, cours_id FROM eval
WHERE note > 15;

Sélectionner le prénom de l’étudiant de nom
“Gator”

→ SELECT prenom FROM etu
WHERE nom = 'Gator'

Sélectionner les étudiants dont le nom
commence par la lettre “H”

→ SELECT prenom FROM etu
WHERE nom LIKE 'H%'

Sélectionner les eid des étudiants avec le
prénom Agathe ou Odile

→ SELECT eid FROM etu
WHERE prenom IN ('Agathe', 'Odile')

33/74

Structured Query Language (SQL) : Conjonction et Disjonction

Comment sélectionner selon plusieurs critères ?
→ Sélectionner les étudiants à partir de leurs nom et prénom
→ Les notes entre deux valeurs

Les opérateurs OR et AND

On peut cumuler les conditions en utilisant les opérateurs binaires “ou” et “et” :

... WHERE (condition1 AND condition2) OR condition3

L’Opérateur NOT

On peut utiliser la négation logique :

... WHERE NOT condition

34/74

Structured Query Language (SQL) : Conjonction et Disjonction

Comment sélectionner selon plusieurs critères ?
→ Sélectionner les étudiants à partir de leurs nom et prénom
→ Les notes entre deux valeurs

Les opérateurs OR et AND

On peut cumuler les conditions en utilisant les opérateurs binaires “ou” et “et” :

... WHERE (condition1 AND condition2) OR condition3

L’Opérateur NOT

On peut utiliser la négation logique :

... WHERE NOT condition

34/74

Structured Query Language (SQL) : Conjonction et Disjonction

Comment sélectionner selon plusieurs critères ?
→ Sélectionner les étudiants à partir de leurs nom et prénom
→ Les notes entre deux valeurs

Les opérateurs OR et AND

On peut cumuler les conditions en utilisant les opérateurs binaires “ou” et “et” :

... WHERE (condition1 AND condition2) OR condition3

L’Opérateur NOT

On peut utiliser la négation logique :

... WHERE NOT condition

34/74

Structured Query Language (SQL) : Les conditions (exemples)

Sélectionner les étudiants et les cours où la
note est comprise entre 10 et 15

→ SELECT etu_id, cours_id FROM eval
WHERE note >= 10 AND note <= 15;

Sélectionner les identifiants des étudiants
“Agathe Zeblouse” et “Odile Huai”

→
SELECT eid FROM etu

WHERE
(prenom='Agathe' AND nom='Zeblouse')
OR
(prenom='Odile' AND nom='Huai')

Sélectionner les prénoms des étudiants
n’ayant pas de “e” (minuscule) dans leurs
nom de famille

→ SELECT prenom FROM etu
WHERE NOT (nom LIKE '%e%')

35/74

Structured Query Language (SQL) : Les conditions (exemples)

Sélectionner les étudiants et les cours où la
note est comprise entre 10 et 15

→ SELECT etu_id, cours_id FROM eval
WHERE note >= 10 AND note <= 15;

Sélectionner les identifiants des étudiants
“Agathe Zeblouse” et “Odile Huai”

→
SELECT eid FROM etu

WHERE
(prenom='Agathe' AND nom='Zeblouse')
OR
(prenom='Odile' AND nom='Huai')

Sélectionner les prénoms des étudiants
n’ayant pas de “e” (minuscule) dans leurs
nom de famille

→ SELECT prenom FROM etu
WHERE NOT (nom LIKE '%e%')

35/74

Structured Query Language (SQL) : Les conditions (exemples)

Sélectionner les étudiants et les cours où la
note est comprise entre 10 et 15

→ SELECT etu_id, cours_id FROM eval
WHERE note >= 10 AND note <= 15;

Sélectionner les identifiants des étudiants
“Agathe Zeblouse” et “Odile Huai”

→
SELECT eid FROM etu

WHERE
(prenom='Agathe' AND nom='Zeblouse')
OR
(prenom='Odile' AND nom='Huai')

Sélectionner les prénoms des étudiants
n’ayant pas de “e” (minuscule) dans leurs
nom de famille

→ SELECT prenom FROM etu
WHERE NOT (nom LIKE '%e%')

35/74

Structured Query Language (SQL) : Les conditions (exemples)

Sélectionner les étudiants et les cours où la
note est comprise entre 10 et 15

→ SELECT etu_id, cours_id FROM eval
WHERE note >= 10 AND note <= 15;

Sélectionner les identifiants des étudiants
“Agathe Zeblouse” et “Odile Huai”

→
SELECT eid FROM etu

WHERE
(prenom='Agathe' AND nom='Zeblouse')
OR
(prenom='Odile' AND nom='Huai')

Sélectionner les prénoms des étudiants
n’ayant pas de “e” (minuscule) dans leurs
nom de famille

→ SELECT prenom FROM etu
WHERE NOT (nom LIKE '%e%')

35/74

Structured Query Language (SQL) : Les conditions (exemples)

Sélectionner les étudiants et les cours où la
note est comprise entre 10 et 15

→ SELECT etu_id, cours_id FROM eval
WHERE note >= 10 AND note <= 15;

Sélectionner les identifiants des étudiants
“Agathe Zeblouse” et “Odile Huai”

→
SELECT eid FROM etu

WHERE
(prenom='Agathe' AND nom='Zeblouse')
OR
(prenom='Odile' AND nom='Huai')

Sélectionner les prénoms des étudiants
n’ayant pas de “e” (minuscule) dans leurs
nom de famille

→ SELECT prenom FROM etu
WHERE NOT (nom LIKE '%e%')

35/74

Structured Query Language (SQL) : Les conditions (exemples)

Sélectionner les étudiants et les cours où la
note est comprise entre 10 et 15

→ SELECT etu_id, cours_id FROM eval
WHERE note >= 10 AND note <= 15;

Sélectionner les identifiants des étudiants
“Agathe Zeblouse” et “Odile Huai”

→
SELECT eid FROM etu

WHERE
(prenom='Agathe' AND nom='Zeblouse')
OR
(prenom='Odile' AND nom='Huai')

Sélectionner les prénoms des étudiants
n’ayant pas de “e” (minuscule) dans leurs
nom de famille

→ SELECT prenom FROM etu
WHERE NOT (nom LIKE '%e%')

35/74

Structured Query Language (SQL) : Les Aggregats

Agrégats

On peut utiliser des agrégats sur les colonnes en utilisant la syntaxe suivante:

SELECT FONCTION_AGG(colonne) FROM ma_table WHERE condition

Il existe plusieurs de ces fonctions :

• MAX, MIN la valeur maximum, la valeur minimum d’une colonne
• AVG la valeur moyenne d’une colonne
• COUNT le nombre d’enregistrements

Un exemple :

Le nombre de notes supérieures à 10 → SELECT COUNT(note) AS nb_note FROM eval
WHERE note > 10

36/74

Structured Query Language (SQL) : Les Aggregats

Agrégats

On peut utiliser des agrégats sur les colonnes en utilisant la syntaxe suivante:

SELECT FONCTION_AGG(colonne) FROM ma_table WHERE condition

Il existe plusieurs de ces fonctions :

• MAX, MIN la valeur maximum, la valeur minimum d’une colonne
• AVG la valeur moyenne d’une colonne
• COUNT le nombre d’enregistrements

Un exemple :

Le nombre de notes supérieures à 10

→ SELECT COUNT(note) AS nb_note FROM eval
WHERE note > 10

36/74

Structured Query Language (SQL) : Les Aggregats

Agrégats

On peut utiliser des agrégats sur les colonnes en utilisant la syntaxe suivante:

SELECT FONCTION_AGG(colonne) FROM ma_table WHERE condition

Il existe plusieurs de ces fonctions :

• MAX, MIN la valeur maximum, la valeur minimum d’une colonne
• AVG la valeur moyenne d’une colonne
• COUNT le nombre d’enregistrements

Un exemple :

Le nombre de notes supérieures à 10 → SELECT COUNT(note) AS nb_note FROM eval
WHERE note > 10

36/74

Structured Query Language (SQL) : Les Aggregats - problème

Imaginons que nous souhaitions afficher la moyenne de chaque étudiant avec leur
identifiant:

Instance de la relation eval
nid etu_id cours_id note
1 1 2 0
4 3 2 15
5 3 3 6
7 1 1 18

→
Résultat souhaité !

etu_id moyenne
3 10.5
1 9

SELECT etu_id, AVG(note) AS moyenne
FROM eval

→
�

ERROR: column "eval.etu_id" must
appear in the GROUP BY clause or
be used in an aggregate function

Il faut grouper par identifiant (mais aussi pour toutes les colonnes sur lesquelles aucun
agrégat n’est appliqué)

37/74

Structured Query Language (SQL) : Les Aggregats - problème

Imaginons que nous souhaitions afficher la moyenne de chaque étudiant avec leur
identifiant:

Instance de la relation eval
nid etu_id cours_id note
1 1 2 0
4 3 2 15
5 3 3 6
7 1 1 18

→
Résultat souhaité !

etu_id moyenne
3 10.5
1 9

SELECT etu_id, AVG(note) AS moyenne
FROM eval

→
�

ERROR: column "eval.etu_id" must
appear in the GROUP BY clause or
be used in an aggregate function

Il faut grouper par identifiant (mais aussi pour toutes les colonnes sur lesquelles aucun
agrégat n’est appliqué)

37/74

Structured Query Language (SQL) : Les Aggregats - problème

Imaginons que nous souhaitions afficher la moyenne de chaque étudiant avec leur
identifiant:

Instance de la relation eval
nid etu_id cours_id note
1 1 2 0
4 3 2 15
5 3 3 6
7 1 1 18

→
Résultat souhaité !

etu_id moyenne
3 10.5
1 9

SELECT etu_id, AVG(note) AS moyenne
FROM eval

→
�

ERROR: column "eval.etu_id" must
appear in the GROUP BY clause or
be used in an aggregate function

Il faut grouper par identifiant (mais aussi pour toutes les colonnes sur lesquelles aucun
agrégat n’est appliqué)

37/74

Structured Query Language (SQL) : Les Aggregats - problème

Imaginons que nous souhaitions afficher la moyenne de chaque étudiant avec leur
identifiant:

Instance de la relation eval
nid etu_id cours_id note
1 1 2 0
4 3 2 15
5 3 3 6
7 1 1 18

→
Résultat souhaité !

etu_id moyenne
3 10.5
1 9

SELECT etu_id, AVG(note) AS moyenne
FROM eval

→
�

ERROR: column "eval.etu_id" must
appear in the GROUP BY clause or
be used in an aggregate function

Il faut grouper par identifiant (mais aussi pour toutes les colonnes sur lesquelles aucun
agrégat n’est appliqué)

37/74

Structured Query Language (SQL) : Les Aggregats et GROUP BY

On va utiliser le mot clef GROUP BY

SELECT etu_id, AVG(note) AS moyenne
FROM eval GROUP BY etu_id

→
�

etu_id moyenne
3 10.5
1 9

On peux aussi trier le résultat ou bien limiter le nombre de résultats retournés :

• ORDER BY permettant de trier (ASC pour un trie croissant et DESC pour un trie
décroissant)

• LIMIT permettant de limiter le nombre d’enregistrements retournés

Sélectionnons les deux meilleures moyennes des
étudiants

SELECT etu_id, AVG(note) AS moyenne
FROM eval GROUP BY etu_id
ORDER BY moyenne DESC LIMIT 2

→
�

etu_id moyenne
1 9
3 10.5

38/74

Structured Query Language (SQL) : Les Aggregats et GROUP BY

On va utiliser le mot clef GROUP BY

SELECT etu_id, AVG(note) AS moyenne
FROM eval GROUP BY etu_id

→
�

etu_id moyenne
3 10.5
1 9

On peux aussi trier le résultat ou bien limiter le nombre de résultats retournés :

• ORDER BY permettant de trier (ASC pour un trie croissant et DESC pour un trie
décroissant)

• LIMIT permettant de limiter le nombre d’enregistrements retournés

Sélectionnons les deux meilleures moyennes des
étudiants

SELECT etu_id, AVG(note) AS moyenne
FROM eval GROUP BY etu_id
ORDER BY moyenne DESC LIMIT 2

→
�

etu_id moyenne
1 9
3 10.5

38/74

Structured Query Language (SQL) : Les Aggregats et GROUP BY

On va utiliser le mot clef GROUP BY

SELECT etu_id, AVG(note) AS moyenne
FROM eval GROUP BY etu_id

→
�

etu_id moyenne
3 10.5
1 9

On peux aussi trier le résultat ou bien limiter le nombre de résultats retournés :

• ORDER BY permettant de trier (ASC pour un trie croissant et DESC pour un trie
décroissant)

• LIMIT permettant de limiter le nombre d’enregistrements retournés

Sélectionnons les deux meilleures moyennes des
étudiants

SELECT etu_id, AVG(note) AS moyenne
FROM eval GROUP BY etu_id
ORDER BY moyenne DESC LIMIT 2

→
�

etu_id moyenne
1 9
3 10.5

38/74

Structured Query Language (SQL) : Les sous requêtes

Sous requête

On peut définir des sous-requêtes pour les conditions (on peut donc utiliser plusieurs
tables pour la sélection)

SELECT * FROM ma_table WHERE ma_colonne OPERATEUR (SELECT ...)

Un exemple :

Le nom des étudiants ayant une note supérieure
à 17

→

SELECT prenom, nom FROM etu
WHERE eid IN

(
SELECT etu_id FROM eval

WHERE note > 17
)

39/74

Structured Query Language (SQL) : Les sous requêtes

Sous requête

On peut définir des sous-requêtes pour les conditions (on peut donc utiliser plusieurs
tables pour la sélection)

SELECT * FROM ma_table WHERE ma_colonne OPERATEUR (SELECT ...)

Un exemple :

Le nom des étudiants ayant une note supérieure
à 17

→

SELECT prenom, nom FROM etu
WHERE eid IN

(
SELECT etu_id FROM eval

WHERE note > 17
)

39/74

Structured Query Language (SQL) : HAVING

La commande HAVING

Quelquefois nous souhaitons sélectionner à partir d’une condition dépendant d’un
agrégat

SELECT * FROM ma_table WHERE HAVING FONCTION_AGG(colonne) OPERATEUR valeur;

Un exemple :
Les moyennes des étudiants ayant au
moins deux notes

→ SELECT AVG(note) FROM eval
GROUP BY etu_id HAVING COUNT(note) >= 2

40/74

Structured Query Language (SQL) : HAVING

La commande HAVING

Quelquefois nous souhaitons sélectionner à partir d’une condition dépendant d’un
agrégat

SELECT * FROM ma_table WHERE HAVING FONCTION_AGG(colonne) OPERATEUR valeur;

Un exemple :
Les moyennes des étudiants ayant au
moins deux notes

→

SELECT AVG(note) FROM eval
GROUP BY etu_id HAVING COUNT(note) >= 2

40/74

Structured Query Language (SQL) : HAVING

La commande HAVING

Quelquefois nous souhaitons sélectionner à partir d’une condition dépendant d’un
agrégat

SELECT * FROM ma_table WHERE HAVING FONCTION_AGG(colonne) OPERATEUR valeur;

Un exemple :
Les moyennes des étudiants ayant au
moins deux notes

→ SELECT AVG(note) FROM eval
GROUP BY etu_id HAVING COUNT(note) >= 2

40/74

Structured Query Language (SQL) : Exercices (au tableau)

En considérant les relations précédentes :

• Etu(eid: serial, nom: str, prenom: str, mail: str)

• Cours(cid: serial, titre: str)

• Eval(nid: serial, etu_id: int, cours_id: int, note: float)

Question 1 :
Afficher la moyenne obtenue sur les cours d’identifiants
1 et 3 si celles-ci sont supérieures à 10

Question 2 :
Retrouver les identifiants des étudiants ayant une
moyenne supérieure à la moyenne globale

Question 3 :
Retrouver les noms et prénoms des utilisateurs ayant
une note supérieure à 10 dans le cours intitulé “Anglais”

Question 4 :
Sélectionner les deux noms de cours avec les
meilleures moyennes

41/74

Structured Query Language (SQL) : Exercices (au tableau)

Question 1 :
Afficher la moyenne obtenue sur les cours d’identifiant
1 et 3 si celles-ci sont supérieures à 10

SELECT AVG(note) FROM eval
WHERE (cours_id=1 OR cours_id=3)
GROUP BY cours_id
HAVING AVG(note) > 10

Question 2 :
Retrouver les identifiants des étudiants ayant une
moyenne supérieure à la moyenne globale

SELECT etu_id FROM eval
GROUP BY etu_id
HAVING AVG(note) > (

SELECT AVG(note) FROM eval);

Question 3 :
Retrouver les noms et prénoms des utilisateurs ayant une
note supérieure à 10 dans le cours intitulé “Anglais”

SELECT nom, prenom FROM etu
WHERE eid IN (SELECT etu_id FROM eval

WHERE cours_id = (SELECT cid FROM cours
WHERE titre = 'Anglais'

) AND note > 10)

Question 4 :
Sélectionner les deux noms de cours avec les
meilleures moyennes

SELECT titre FROM cours
WHERE cid IN (SELECT cours_id FROM
(SELECT cours_id, AVG(note) as moyenne

GROUP BY cours_id)
ORDER BY moyenne DESC LIMIT 2)

42/74

Structured Query Language (SQL) : Exercices (au tableau)

Question 1 :
Afficher la moyenne obtenue sur les cours d’identifiant
1 et 3 si celles-ci sont supérieures à 10

SELECT AVG(note) FROM eval
WHERE (cours_id=1 OR cours_id=3)
GROUP BY cours_id
HAVING AVG(note) > 10

Question 2 :
Retrouver les identifiants des étudiants ayant une
moyenne supérieure à la moyenne globale

SELECT etu_id FROM eval
GROUP BY etu_id
HAVING AVG(note) > (

SELECT AVG(note) FROM eval);

Question 3 :
Retrouver les noms et prénoms des utilisateurs ayant une
note supérieure à 10 dans le cours intitulé “Anglais”

SELECT nom, prenom FROM etu
WHERE eid IN (SELECT etu_id FROM eval

WHERE cours_id = (SELECT cid FROM cours
WHERE titre = 'Anglais'

) AND note > 10)

Question 4 :
Sélectionner les deux noms de cours avec les
meilleures moyennes

SELECT titre FROM cours
WHERE cid IN (SELECT cours_id FROM
(SELECT cours_id, AVG(note) as moyenne

GROUP BY cours_id)
ORDER BY moyenne DESC LIMIT 2)

42/74

Structured Query Language (SQL) : Exercices (au tableau)

Question 1 :
Afficher la moyenne obtenue sur les cours d’identifiant
1 et 3 si celles-ci sont supérieures à 10

SELECT AVG(note) FROM eval
WHERE (cours_id=1 OR cours_id=3)
GROUP BY cours_id
HAVING AVG(note) > 10

Question 2 :
Retrouver les identifiants des étudiants ayant une
moyenne supérieure à la moyenne globale

SELECT etu_id FROM eval
GROUP BY etu_id
HAVING AVG(note) > (

SELECT AVG(note) FROM eval);

Question 3 :
Retrouver les noms et prénoms des utilisateurs ayant une
note supérieure à 10 dans le cours intitulé “Anglais”

SELECT nom, prenom FROM etu
WHERE eid IN (SELECT etu_id FROM eval

WHERE cours_id = (SELECT cid FROM cours
WHERE titre = 'Anglais'

) AND note > 10)

Question 4 :
Sélectionner les deux noms de cours avec les
meilleures moyennes

SELECT titre FROM cours
WHERE cid IN (SELECT cours_id FROM
(SELECT cours_id, AVG(note) as moyenne

GROUP BY cours_id)
ORDER BY moyenne DESC LIMIT 2)

42/74

Structured Query Language (SQL) : Exercices (au tableau)

Question 1 :
Afficher la moyenne obtenue sur les cours d’identifiant
1 et 3 si celles-ci sont supérieures à 10

SELECT AVG(note) FROM eval
WHERE (cours_id=1 OR cours_id=3)
GROUP BY cours_id
HAVING AVG(note) > 10

Question 2 :
Retrouver les identifiants des étudiants ayant une
moyenne supérieure à la moyenne globale

SELECT etu_id FROM eval
GROUP BY etu_id
HAVING AVG(note) > (

SELECT AVG(note) FROM eval);

Question 3 :
Retrouver les noms et prénoms des utilisateurs ayant une
note supérieure à 10 dans le cours intitulé “Anglais”

SELECT nom, prenom FROM etu
WHERE eid IN (SELECT etu_id FROM eval

WHERE cours_id = (SELECT cid FROM cours
WHERE titre = 'Anglais'

) AND note > 10)

Question 4 :
Sélectionner les deux noms de cours avec les
meilleures moyennes

SELECT titre FROM cours
WHERE cid IN (SELECT cours_id FROM
(SELECT cours_id, AVG(note) as moyenne

GROUP BY cours_id)
ORDER BY moyenne DESC LIMIT 2)

42/74

Structured Query Language (SQL) : Exercices (au tableau)

Question 1 :
Afficher la moyenne obtenue sur les cours d’identifiant
1 et 3 si celles-ci sont supérieures à 10

SELECT AVG(note) FROM eval
WHERE (cours_id=1 OR cours_id=3)
GROUP BY cours_id
HAVING AVG(note) > 10

Question 2 :
Retrouver les identifiants des étudiants ayant une
moyenne supérieure à la moyenne globale

SELECT etu_id FROM eval
GROUP BY etu_id
HAVING AVG(note) > (

SELECT AVG(note) FROM eval);

Question 3 :
Retrouver les noms et prénoms des utilisateurs ayant une
note supérieure à 10 dans le cours intitulé “Anglais”

SELECT nom, prenom FROM etu
WHERE eid IN (SELECT etu_id FROM eval

WHERE cours_id = (SELECT cid FROM cours
WHERE titre = 'Anglais'

) AND note > 10)

Question 4 :
Sélectionner les deux noms de cours avec les
meilleures moyennes

SELECT titre FROM cours
WHERE cid IN (SELECT cours_id FROM
(SELECT cours_id, AVG(note) as moyenne

GROUP BY cours_id)
ORDER BY moyenne DESC LIMIT 2)

42/74

Structured Query Language (SQL) : Exercices (au tableau)

Question 1 :
Afficher la moyenne obtenue sur les cours d’identifiant
1 et 3 si celles-ci sont supérieures à 10

SELECT AVG(note) FROM eval
WHERE (cours_id=1 OR cours_id=3)
GROUP BY cours_id
HAVING AVG(note) > 10

Question 2 :
Retrouver les identifiants des étudiants ayant une
moyenne supérieure à la moyenne globale

SELECT etu_id FROM eval
GROUP BY etu_id
HAVING AVG(note) > (

SELECT AVG(note) FROM eval);

Question 3 :
Retrouver les noms et prénoms des utilisateurs ayant une
note supérieure à 10 dans le cours intitulé “Anglais”

SELECT nom, prenom FROM etu
WHERE eid IN (SELECT etu_id FROM eval

WHERE cours_id = (SELECT cid FROM cours
WHERE titre = 'Anglais'

) AND note > 10)

Question 4 :
Sélectionner les deux noms de cours avec les
meilleures moyennes

SELECT titre FROM cours
WHERE cid IN (SELECT cours_id FROM
(SELECT cours_id, AVG(note) as moyenne

GROUP BY cours_id)
ORDER BY moyenne DESC LIMIT 2)

42/74

Structured Query Language (SQL) : Exercices (au tableau)

Question 1 :
Afficher la moyenne obtenue sur les cours d’identifiant
1 et 3 si celles-ci sont supérieures à 10

SELECT AVG(note) FROM eval
WHERE (cours_id=1 OR cours_id=3)
GROUP BY cours_id
HAVING AVG(note) > 10

Question 2 :
Retrouver les identifiants des étudiants ayant une
moyenne supérieure à la moyenne globale

SELECT etu_id FROM eval
GROUP BY etu_id
HAVING AVG(note) > (

SELECT AVG(note) FROM eval);

Question 3 :
Retrouver les noms et prénoms des utilisateurs ayant une
note supérieure à 10 dans le cours intitulé “Anglais”

SELECT nom, prenom FROM etu
WHERE eid IN (SELECT etu_id FROM eval

WHERE cours_id = (SELECT cid FROM cours
WHERE titre = 'Anglais'

) AND note > 10)

Question 4 :
Sélectionner les deux noms de cours avec les
meilleures moyennes

SELECT titre FROM cours
WHERE cid IN (SELECT cours_id FROM
(SELECT cours_id, AVG(note) as moyenne

GROUP BY cours_id)
ORDER BY moyenne DESC LIMIT 2)

42/74

Structured Query Language (SQL) : Exercices (au tableau)

Question 1 :
Afficher la moyenne obtenue sur les cours d’identifiant
1 et 3 si celles-ci sont supérieures à 10

SELECT AVG(note) FROM eval
WHERE (cours_id=1 OR cours_id=3)
GROUP BY cours_id
HAVING AVG(note) > 10

Question 2 :
Retrouver les identifiants des étudiants ayant une
moyenne supérieure à la moyenne globale

SELECT etu_id FROM eval
GROUP BY etu_id
HAVING AVG(note) > (

SELECT AVG(note) FROM eval);

Question 3 :
Retrouver les noms et prénoms des utilisateurs ayant une
note supérieure à 10 dans le cours intitulé “Anglais”

SELECT nom, prenom FROM etu
WHERE eid IN (SELECT etu_id FROM eval

WHERE cours_id = (SELECT cid FROM cours
WHERE titre = 'Anglais'

) AND note > 10)

Question 4 :
Sélectionner les deux noms de cours avec les
meilleures moyennes

SELECT titre FROM cours
WHERE cid IN (SELECT cours_id FROM
(SELECT cours_id, AVG(note) as moyenne

GROUP BY cours_id)
ORDER BY moyenne DESC LIMIT 2)

42/74

Structured Query Language (SQL) : ALL et ANY

La commande ALL permet de comparer une valeur à un ensemble de valeurs retourné
par une sous-requête. La condition doit être vérifier pour toutes les valeurs retournées
par la sous-requête.

... WHERE x OPERATOR ALL(SELECT y FROM ...)

La sous requête retourne y_1,y_2,…, y_n, alors la requête est équivalente à

... WHERE x OPERATOR y_1 AND x OPERATOR y_2 AND ... AND x OPERATOR y_3

Exemple : Quels sont les étudiants dont la note minimale est différente de toutes les
notes de l’étudiant 1 ?

SELECT etu_id from eval GROUP BY etu_id HAVING MIN(note) != ALL(
SELECT note FROM eval WHERE etu_id = 1)

43/74

Structured Query Language (SQL) : ALL et ANY

La commande ALL permet de comparer une valeur à un ensemble de valeurs retourné
par une sous-requête. La condition doit être vérifier pour toutes les valeurs retournées
par la sous-requête.

... WHERE x OPERATOR ALL(SELECT y FROM ...)

La sous requête retourne y_1,y_2,…, y_n, alors la requête est équivalente à

... WHERE x OPERATOR y_1 AND x OPERATOR y_2 AND ... AND x OPERATOR y_3

Exemple : Quels sont les étudiants dont la note minimale est différente de toutes les
notes de l’étudiant 1 ?

SELECT etu_id from eval GROUP BY etu_id HAVING MIN(note) != ALL(
SELECT note FROM eval WHERE etu_id = 1)

43/74

Structured Query Language (SQL) : ALL et ANY

La commande ALL permet de comparer une valeur à un ensemble de valeurs retourné
par une sous-requête. La condition doit être vérifier pour toutes les valeurs retournées
par la sous-requête.

... WHERE x OPERATOR ALL(SELECT y FROM ...)

La sous requête retourne y_1,y_2,…, y_n, alors la requête est équivalente à

... WHERE x OPERATOR y_1 AND x OPERATOR y_2 AND ... AND x OPERATOR y_3

Exemple : Quels sont les étudiants dont la note minimale est différente de toutes les
notes de l’étudiant 1 ?

SELECT etu_id from eval GROUP BY etu_id HAVING MIN(note) != ALL(
SELECT note FROM eval WHERE etu_id = 1)

43/74

Structured Query Language (SQL) : ALL et ANY

La commande ALL permet de comparer une valeur à un ensemble de valeurs retourné
par une sous-requête. La condition doit être vérifier pour toutes les valeurs retournées
par la sous-requête.

... WHERE x OPERATOR ALL(SELECT y FROM ...)

La sous requête retourne y_1,y_2,…, y_n, alors la requête est équivalente à

... WHERE x OPERATOR y_1 AND x OPERATOR y_2 AND ... AND x OPERATOR y_3

Exemple : Quels sont les étudiants dont la note minimale est différente de toutes les
notes de l’étudiant 1 ?

SELECT etu_id from eval GROUP BY etu_id HAVING MIN(note) != ALL(
SELECT note FROM eval WHERE etu_id = 1)

43/74

Structured Query Language (SQL) : ALL et ANY

La commande ALL permet de comparer une valeur à un ensemble de valeurs retourné
par une sous-requête. La condition doit être vérifier pour toutes les valeurs retournées
par la sous-requête.

... WHERE x OPERATOR ALL(SELECT y FROM ...)

La sous requête retourne y_1,y_2,…, y_n, alors la requête est équivalente à

... WHERE x OPERATOR y_1 AND x OPERATOR y_2 AND ... AND x OPERATOR y_3

Exemple : Quels sont les étudiants dont la note minimale est différente de toutes les
notes de l’étudiant 1 ?

SELECT etu_id from eval GROUP BY etu_id HAVING MIN(note) != ALL(
SELECT note FROM eval WHERE etu_id = 1)

43/74

Structured Query Language (SQL) : ALL et ANY

La commande ALL permet de comparer une valeur à un ensemble de valeurs retourné
par une sous-requête. La condition doit être vérifier pour toutes les valeurs retournées
par la sous-requête.

... WHERE x OPERATOR ALL(SELECT y FROM ...)

La sous requête retourne y_1,y_2,…, y_n, alors la requête est équivalente à

... WHERE x OPERATOR y_1 AND x OPERATOR y_2 AND ... AND x OPERATOR y_3

Exemple : Quels sont les étudiants dont la note minimale est différente de toutes les
notes de l’étudiant 1 ?

SELECT etu_id from eval GROUP BY etu_id HAVING MIN(note) != ALL(
SELECT note FROM eval WHERE etu_id = 1)

43/74

Structured Query Language (SQL) : ANY

La commande ANY permet de comparer une valeur à un ensemble de valeurs retournées
par une sous-requête. La condition doit être vérifier par au moins une des valeurs
retournées par la sous-requête.

... WHERE x OPERATOR ANY(SELECT y ...)

Et que la sous requête retourne y_1,y_2,…, y_n, alors la requête est équivalente à

... WHERE x OPERATOR y_1 OR x OPERATOR y_2 OR ... OR x OPERATOR y_3

Exemple : Quels sont les étudiants dont la note minimale correspond au moins à une
note de l’étudiant 1 ?

SELECT etu_id from eval GROUP BY etu_id HAVING MIN(note) == ANY(
SELECT note FROM eval WHERE etu_id = 1)

44/74

Structured Query Language (SQL) : ANY

La commande ANY permet de comparer une valeur à un ensemble de valeurs retournées
par une sous-requête. La condition doit être vérifier par au moins une des valeurs
retournées par la sous-requête.

... WHERE x OPERATOR ANY(SELECT y ...)

Et que la sous requête retourne y_1,y_2,…, y_n, alors la requête est équivalente à

... WHERE x OPERATOR y_1 OR x OPERATOR y_2 OR ... OR x OPERATOR y_3

Exemple : Quels sont les étudiants dont la note minimale correspond au moins à une
note de l’étudiant 1 ?

SELECT etu_id from eval GROUP BY etu_id HAVING MIN(note) == ANY(
SELECT note FROM eval WHERE etu_id = 1)

44/74

Structured Query Language (SQL) : ANY

La commande ANY permet de comparer une valeur à un ensemble de valeurs retournées
par une sous-requête. La condition doit être vérifier par au moins une des valeurs
retournées par la sous-requête.

... WHERE x OPERATOR ANY(SELECT y ...)

Et que la sous requête retourne y_1,y_2,…, y_n, alors la requête est équivalente à

... WHERE x OPERATOR y_1 OR x OPERATOR y_2 OR ... OR x OPERATOR y_3

Exemple : Quels sont les étudiants dont la note minimale correspond au moins à une
note de l’étudiant 1 ?

SELECT etu_id from eval GROUP BY etu_id HAVING MIN(note) == ANY(
SELECT note FROM eval WHERE etu_id = 1)

44/74

Structured Query Language (SQL) : ANY

La commande ANY permet de comparer une valeur à un ensemble de valeurs retournées
par une sous-requête. La condition doit être vérifier par au moins une des valeurs
retournées par la sous-requête.

... WHERE x OPERATOR ANY(SELECT y ...)

Et que la sous requête retourne y_1,y_2,…, y_n, alors la requête est équivalente à

... WHERE x OPERATOR y_1 OR x OPERATOR y_2 OR ... OR x OPERATOR y_3

Exemple : Quels sont les étudiants dont la note minimale correspond au moins à une
note de l’étudiant 1 ?

SELECT etu_id from eval GROUP BY etu_id HAVING MIN(note) == ANY(
SELECT note FROM eval WHERE etu_id = 1)

44/74

Structured Query Language (SQL) : ANY

La commande ANY permet de comparer une valeur à un ensemble de valeurs retournées
par une sous-requête. La condition doit être vérifier par au moins une des valeurs
retournées par la sous-requête.

... WHERE x OPERATOR ANY(SELECT y ...)

Et que la sous requête retourne y_1,y_2,…, y_n, alors la requête est équivalente à

... WHERE x OPERATOR y_1 OR x OPERATOR y_2 OR ... OR x OPERATOR y_3

Exemple : Quels sont les étudiants dont la note minimale correspond au moins à une
note de l’étudiant 1 ?

SELECT etu_id from eval GROUP BY etu_id HAVING MIN(note) == ANY(
SELECT note FROM eval WHERE etu_id = 1)

44/74

Structured Query Language (SQL) : ANY

La commande ANY permet de comparer une valeur à un ensemble de valeurs retournées
par une sous-requête. La condition doit être vérifier par au moins une des valeurs
retournées par la sous-requête.

... WHERE x OPERATOR ANY(SELECT y ...)

Et que la sous requête retourne y_1,y_2,…, y_n, alors la requête est équivalente à

... WHERE x OPERATOR y_1 OR x OPERATOR y_2 OR ... OR x OPERATOR y_3

Exemple : Quels sont les étudiants dont la note minimale correspond au moins à une
note de l’étudiant 1 ?

SELECT etu_id from eval GROUP BY etu_id HAVING MIN(note) == ANY(
SELECT note FROM eval WHERE etu_id = 1)

44/74

Structured Query Language (SQL) : Les opérateurs arithmétiques

Opérateurs arithmètiques

On peut utiliser des opérateurs arithmétiques sur les colonnes

• L’addition +

• La soustraction −
• la multiplication ∗
• la division /

Exemple :

→ Ramener les notes sur 100 points et afficher celles supérieures à 50

SELECT etu_id, cours_id, note/.2 as note_sur_100
FROM eval WHERE note/.2 > 50

etu_id cours_id not_sur_100
3 2 65
1 1 80
1 2 90

45/74

Structured Query Language (SQL) : Les opérateurs arithmétiques

Opérateurs arithmètiques

On peut utiliser des opérateurs arithmétiques sur les colonnes

• L’addition +

• La soustraction −
• la multiplication ∗
• la division /

Exemple :

→ Ramener les notes sur 100 points et afficher celles supérieures à 50

SELECT etu_id, cours_id, note/.2 as note_sur_100
FROM eval WHERE note/.2 > 50

etu_id cours_id not_sur_100
3 2 65
1 1 80
1 2 90

45/74

Structured Query Language (SQL) : Les opérations ensemblistes

Le résultat d’une requête définit un ensemble (un sous ensemble d’une relation)→ Les
opérations ensemblistes permettent de faire des opérations entres différentes relations
(de même schéma)

Un exemple
Soit deux ensembles A et B :

• A contient les notes des étudiants ayant au moins une note en dessous de 7
• B contient les notes des étudiants ayant une moyenne supérieur à 10

Quels sont les étudiants ayant une moyenne supérieure à 10 et au moins une note
inférieure à 7

→ Intersection des deux ensembles
Il existe une autre solution en utilisant une conjonction

46/74

Structured Query Language (SQL) : Les opérations ensemblistes

Les opérateurs ensemblistes

• L’union de deux résultats
SELECT * FROM ... UNION SELECT * FROM

• L’intersection de deux résultats
SELECT * FROM ... INTERSECT SELECT * FROM

• La Différence (différent mots clefs selon les SGBDs)
SELECT * FROM ... EXCEPT SELECT * FROM

47/74

Structured Query Language (SQL) : Les opérations ensemblistes (exemples)

• Eval(nid: serial, etu_id: int, cours_id: int, note: float)

Proposez une solution faisant intervenir un opérateur ensembliste

Sélectionner les étudiants
(identifiants) ayant une moyenne
supérieure à 10 mais au moins une
note inférieur à 7

SELECT etu_id FROM eval GROUP BY etu_id HAVING AVG(note) >= 10
INTERSECTION
SELECT etu_id FROM eval GROUP BY etu_id HAVING MIN(note) < 7

Sélectionner les étudiants
(identifiants) ayant une moyenne
supérieur à 10 ou ayant au moins une
note supérieure à 15

SELECT etu_id FROM eval GROUP BY etu_id HAVING AVG(note) >= 10
UNION
SELECT etu_id FROM eval GROUP BY etu_id HAVING MAX(note) > 15

48/74

Structured Query Language (SQL) : Les opérations ensemblistes (exemples)

• Eval(nid: serial, etu_id: int, cours_id: int, note: float)

Proposez une solution faisant intervenir un opérateur ensembliste

Sélectionner les étudiants
(identifiants) ayant une moyenne
supérieure à 10 mais au moins une
note inférieur à 7

SELECT etu_id FROM eval GROUP BY etu_id HAVING AVG(note) >= 10
INTERSECTION
SELECT etu_id FROM eval GROUP BY etu_id HAVING MIN(note) < 7

Sélectionner les étudiants
(identifiants) ayant une moyenne
supérieur à 10 ou ayant au moins une
note supérieure à 15

SELECT etu_id FROM eval GROUP BY etu_id HAVING AVG(note) >= 10
UNION
SELECT etu_id FROM eval GROUP BY etu_id HAVING MAX(note) > 15

48/74

Structured Query Language (SQL) : Les opérations ensemblistes (exemples)

• Eval(nid: serial, etu_id: int, cours_id: int, note: float)

Proposez une solution faisant intervenir un opérateur ensembliste

Sélectionner les étudiants
(identifiants) ayant une moyenne
supérieure à 10 mais au moins une
note inférieur à 7

SELECT etu_id FROM eval GROUP BY etu_id HAVING AVG(note) >= 10
INTERSECTION
SELECT etu_id FROM eval GROUP BY etu_id HAVING MIN(note) < 7

Sélectionner les étudiants
(identifiants) ayant une moyenne
supérieur à 10 ou ayant au moins une
note supérieure à 15

SELECT etu_id FROM eval GROUP BY etu_id HAVING AVG(note) >= 10
UNION
SELECT etu_id FROM eval GROUP BY etu_id HAVING MAX(note) > 15

48/74

Structured Query Language (SQL) : Les opérations ensemblistes (exemples)

• Eval(nid: serial, etu_id: int, cours_id: int, note: float)

Proposez une solution faisant intervenir un opérateur ensembliste

Sélectionner les étudiants
(identifiants) ayant une moyenne
supérieure à 10 mais au moins une
note inférieur à 7

SELECT etu_id FROM eval GROUP BY etu_id HAVING AVG(note) >= 10
INTERSECTION
SELECT etu_id FROM eval GROUP BY etu_id HAVING MIN(note) < 7

Sélectionner les étudiants
(identifiants) ayant une moyenne
supérieur à 10 ou ayant au moins une
note supérieure à 15

SELECT etu_id FROM eval GROUP BY etu_id HAVING AVG(note) >= 10
UNION
SELECT etu_id FROM eval GROUP BY etu_id HAVING MAX(note) > 15

48/74

Structured Query Language (SQL) :Le produit cartésien et la jointure

• Etu(eid: serial, nom: str, prenom: str, mail: str)
• Cours(cid: serial, titre: str)
• Eval(nid: serial, etu_id: int, cours_id: int, note: float)

En considérant le schéma précédent on aimerait obtenir une relation comprenant le
nom, le prénom, la note et le nom du cours pour chaque étudiant ?

prenom nom titre note
Agathe Zeblouse Mathématiques 0
Agathe Zeblouse Bases de données avancées 18
Agathe Zelouse Anglais 15
Jean Peuplu Mathématiques 15
Jean Peuplu Anglais 6
Odile Huai Bases de données avancées 5
Paul Hochon Bases de données avancées 5

Est-il possible avec ce que nous avons déjà vu d’obtenir cette relation ?

→ � NON !

49/74

Structured Query Language (SQL) :Le produit cartésien et la jointure

• Etu(eid: serial, nom: str, prenom: str, mail: str)
• Cours(cid: serial, titre: str)
• Eval(nid: serial, etu_id: int, cours_id: int, note: float)

En considérant le schéma précédent on aimerait obtenir une relation comprenant le
nom, le prénom, la note et le nom du cours pour chaque étudiant ?

prenom nom titre note
Agathe Zeblouse Mathématiques 0
Agathe Zeblouse Bases de données avancées 18
Agathe Zelouse Anglais 15
Jean Peuplu Mathématiques 15
Jean Peuplu Anglais 6
Odile Huai Bases de données avancées 5
Paul Hochon Bases de données avancées 5

Est-il possible avec ce que nous avons déjà vu d’obtenir cette relation ?→ � NON !

49/74

Structured Query Language (SQL) : Le produit cartésien

Le prduit cartésien :

Le produit cartésien entre deux ensemble A et B est noté A× B. Si A = {a1,a2} et
B = {b1,b2} alors :

A× B = {(a1,b1), (a1,b2), (a2,b1), (a2,b2)}

C’est à dire l’ensemble des couples !!

→ En SQL c’est pareil !!! Si A et B sont des relations, le produit cartésien sera l’ensemble
des couples d’enregistrements de A et B

50/74

Structured Query Language (SQL) : Le produit cartésien

Le prduit cartésien :

Le produit cartésien entre deux ensemble A et B est noté A× B. Si A = {a1,a2} et
B = {b1,b2} alors :

A× B = {(a1,b1), (a1,b2), (a2,b1), (a2,b2)}

C’est à dire l’ensemble des couples !!

→ En SQL c’est pareil !!! Si A et B sont des relations, le produit cartésien sera l’ensemble
des couples d’enregistrements de A et B

50/74

Structured Query Language (SQL) : Le produit cartésien

Le prduit cartésien :

Le produit cartésien entre deux ensemble A et B est noté A× B. Si A = {a1,a2} et
B = {b1,b2} alors :

A× B = {(a1,b1), (a1,b2), (a2,b1), (a2,b2)}

C’est à dire l’ensemble des couples !!

→ En SQL c’est pareil !!! Si A et B sont des relations, le produit cartésien sera l’ensemble
des couples d’enregistrements de A et B

50/74

Structured Query Language (SQL) : Le produit cartésien

eid prenom nom
1 Agathe Zeblouse
2 Odile Huai

×

etu_id cours_id note
1 2 0
1 1 18
1 3 15

Quel résultat pour le produit cartésien ?

→

eid prenom nom etu_id cours_id note
1 Agathe Zeblouse 1 2 0
2 Odile Huai 1 2 0
1 Agathe Zeblouse 1 1 18
2 Odile Huai 1 1 18
1 Agathe Zeblouse 1 3 15
2 Odile Huai 1 3 15

→ Chaque ligne correspond à la note d’un étudiant ? � NON !

51/74

Structured Query Language (SQL) : Le produit cartésien

eid prenom nom
1 Agathe Zeblouse
2 Odile Huai

×

etu_id cours_id note
1 2 0
1 1 18
1 3 15

Quel résultat pour le produit cartésien ?

→

eid prenom nom etu_id cours_id note
1 Agathe Zeblouse 1 2 0
2 Odile Huai 1 2 0
1 Agathe Zeblouse 1 1 18
2 Odile Huai 1 1 18
1 Agathe Zeblouse 1 3 15
2 Odile Huai 1 3 15

→ Chaque ligne correspond à la note d’un étudiant ?

� NON !

51/74

Structured Query Language (SQL) : Le produit cartésien

eid prenom nom
1 Agathe Zeblouse
2 Odile Huai

×

etu_id cours_id note
1 2 0
1 1 18
1 3 15

Quel résultat pour le produit cartésien ?

→

eid prenom nom etu_id cours_id note
1 Agathe Zeblouse 1 2 0
2 Odile Huai 1 2 0
1 Agathe Zeblouse 1 1 18
2 Odile Huai 1 1 18
1 Agathe Zeblouse 1 3 15
2 Odile Huai 1 3 15

→ Chaque ligne correspond à la note d’un étudiant ? � NON !

51/74

Structured Query Language (SQL) : Le produit cartésien

eid prenom nom
1 Agathe Zeblouse
2 Odile Huai

×

etu_id cours_id note
1 2 0
1 1 18
1 3 15

Quel résultat pour le produit cartésien ?

→

eid prenom nom etu_id cours_id note
1 Agathe Zeblouse 1 2 0
2 Odile Huai 1 2 0
1 Agathe Zeblouse 1 1 18
2 Odile Huai 1 1 18
1 Agathe Zeblouse 1 3 15
2 Odile Huai 1 3 15

→ Chaque ligne correspond à la note d’un étudiant ? � NON !

51/74

Structured Query Language (SQL) : Le produit cartésien

eid prenom nom
1 Agathe Zeblouse
2 Odile Huai

×

etu_id cours_id note
1 2 0
1 1 18
1 3 15

Quel résultat pour le produit cartésien ?

→

eid prenom nom etu_id cours_id note
1 Agathe Zeblouse 1 2 0
2 Odile Huai 1 2 0
1 Agathe Zeblouse 1 1 18
2 Odile Huai 1 1 18
1 Agathe Zeblouse 1 3 15
2 Odile Huai 1 3 15

→ Chaque ligne correspond à la note d’un étudiant ? � NON !
→ Est-il possible avec ce que nous avons déjà vu d’obtenir ce résultat ?

OUI !

51/74

Structured Query Language (SQL) : Le produit cartésien

eid prenom nom
1 Agathe Zeblouse
2 Odile Huai

×

etu_id cours_id note
1 2 0
1 1 18
1 3 15

Quel résultat pour le produit cartésien ?

→

eid prenom nom etu_id cours_id note
1 Agathe Zeblouse 1 2 0
2 Odile Huai 1 2 0
1 Agathe Zeblouse 1 1 18
2 Odile Huai 1 1 18
1 Agathe Zeblouse 1 3 15
2 Odile Huai 1 3 15

→ Chaque ligne correspond à la note d’un étudiant ? � NON !
→ Est-il possible avec ce que nous avons déjà vu d’obtenir ce résultat ? OUI !

51/74

Structured Query Language (SQL) : Le produit cartésien

Produit Cartésien et SQL
En SQL on définie le produit cartésien entre deux relations A et B comme suit :

SELECT ... FROM A, B

ou bien,

SELECT ... FROM A CROSS JOIN B

Il est tout à fait possible de joindre n relations !!!

SELECT ... FROM T1 CROSS JOIN T2 CROSS JOIN T3 ... CROSS JOIN TN

52/74

Structured Query Language (SQL) : Le produit cartésien et la jointure

Comment obtenir une relation comprenant le nom, le prénom, la note et le nom du cours
pour chaque étudiant (une solution avec requête imbriqué et une sans)? Calcul du
produit cartésien puis filtrage ?

Solution 1
SELECT prenom, nom, titre note FROM (SELECT * FROM cours, eval, etu)
WHERE cid=cours_id AND eid=etu_id ;

Solution 2
SELECT E.prenom, E.nom, C.titre, N.note FROM cours C, eval N, etu E
WHERE C.cid=N.cours_id AND E.eid=E.etu_id ;

il s’agit de la jointure

53/74

Structured Query Language (SQL) : Le produit cartésien, compléxité

Si on considère la requête suivante

SELECT * FROM cours, eval, etu

Si le nombre d’enregistrement pour chaque relation est le suivant :

• cours→ 100
• eval→ 100,000
• etu→ 10,000

Quelle est la taille de la relation en sortie de la requête ?

→ � 1011

54/74

Structured Query Language (SQL) : Le produit cartésien, compléxité

Si on considère la requête suivante

SELECT * FROM cours, eval, etu

Si le nombre d’enregistrement pour chaque relation est le suivant :

• cours→ 100
• eval→ 100,000
• etu→ 10,000

Quelle est la taille de la relation en sortie de la requête ? → � 1011

54/74

Structured Query Language (SQL) : Jointure

La jointure
Les jointures en SQL permettent d’associer plusieurs tables dans une même requête.

• CROSS JOIN : Produit cartésien
• INNER JOIN ou JOIN: Association de tables selon les valeurs d’un champs des
relations jointes

• LEFT JOIN: Association de tables selon un champs des relations jointes, si les la
valeur n’apparaît pas dans la table ’droite’ les champs associées à la relation droite
sont null

• RIGHT JOIN: Association de tables selon un champs des relations jointes, si les la
valeurs n’apparaît pas dans la table ’gauche’ les champs associées à la relation
gauche sont null

55/74

Structured Query Language (SQL) : INNER JOIN

INNER JOIN
INNER JOIN joint deux tables à partir d’un champs. Cette commande retourne les
enregistrements lorsqu’il y a au moins une ligne dans chaque colonne qui correspond à
la condition.

Quand on parlera de jointure sans préciser nous désignerons la jointure INNER JOIN !!!

A B

Les lignes sont jointes sur les valeurs
présentes dans les deux tables

56/74

Structured Query Language (SQL) : INNER JOIN

eid prenom nom
1 Agathe Zeblouse
2 Odile Huai
3 Jean Peuplu

INNER JOIN (eid=etu_id)

etu_id cours_id note
1 2 0
1 1 18
1 3 15
2 1 5

eid prenom nom etu_id cours_id note
1 Agathe Zeblouse 1 2 0
1 Agathe Zeblouse 1 1 18
1 Agathe Zeblouse 1 3 15
2 Odile Huai 2 1 5

57/74

Structured Query Language (SQL) : INNER JOIN

Différentes syntaxes equivalentes
Soit A et B deux relations, on souhaite faire la jointure sur la colonne id de A et aid de B

SELECT * FROM A JOIN B ON A.id = B.aid

SELECT * FROM A INNER JOIN B ON A.id = B.aid

SELECT * FROM A , B WHERE A.id = B.aid

Si on fait la jointure sur les colonnes id de A et id de B on peut utiliser NATURAL JOIN

SELECT * FROM A NATURAL JOIN B

58/74

Structured Query Language (SQL) : Exemple

• Etu(eid: serial, nom: str, prenom: str, mail: str)
• Cours(cid: serial, titre: str)
• Eval(nid: serial, etu_id: int, cours_id: int, note: float)

Obtenir la liste des prénoms et des noms
des étudiants ayant une note supérieure à
10

Retrouver toutes les notes en retournant le
nom, le prénom de et le cours

59/74

Structured Query Language (SQL) : Exemple

• Etu(eid: serial, nom: str, prenom: str, mail: str)
• Cours(cid: serial, titre: str)
• Eval(nid: serial, etu_id: int, cours_id: int, note: float)

Obtenir la liste des prénoms et des noms
des étudiants ayant une note supérieure à
10

SELECT nom, prenom
FROM etu, eval
WHERE etu.eid = eval.etu_id AND note > 10

Retrouver toutes les notes en retournant le
nom, le prénom de et le cours

SELECT nom, prenom, cours, note
FROM etu, eval, cours
WHERE etu.eid=eval.etu_id
AND eval.cours_id = cours.cid

59/74

Structured Query Language (SQL) : Exemple

• Etu(eid: serial, nom: str, prenom: str, mail: str)
• Cours(cid: serial, titre: str)
• Eval(nid: serial, etu_id: int, cours_id: int, note: float)

Obtenir la liste des prénoms et des noms
des étudiants ayant une note supérieure à
10

SELECT nom, prenom
FROM etu, eval
WHERE etu.eid = eval.etu_id AND note > 10

Retrouver toutes les notes en retournant le
nom, le prénom de et le cours

SELECT nom, prenom, cours, note
FROM etu, eval, cours
WHERE etu.eid=eval.etu_id
AND eval.cours_id = cours.cid

59/74

Structured Query Language (SQL) : LEFT JOIN

Jointure gauche

LEFT JOIN joint deux tables à partir d’un champ. La commande permet de lister tous les
résultats de la table de gauche même s’il n’y a pas de correspondance dans la deuxième
table (les valeurs des colonnes de la table de droite sont nulles lorsque qu’il n’y pas de
correspondances).

A B

Les lignes sont jointes sur les valeurs
présentes dans les deux tables

60/74

Structured Query Language (SQL) : LEFT JOIN

1 Agathe Zeblouse
2 Odile Huai
3 Jean Peuplu

LEFT JOIN (eid=etu_id)

etu_id cours_id note
1 2 0
1 1 18
1 3 15
2 1 5

eid prenom nom etu_id cours_id note
1 Agathe Zeblouse 1 2 0
1 Agathe Zeblouse 1 1 18
1 Agathe Zeblouse 1 3 15
2 Odile Huai 2 1 5
3 Jean Peuplu NULL NULL NULL

61/74

Structured Query Language (SQL) : LEFT JOIN

Différentes syntaxes equivalents
Soit A et B deux relations, on souhaite faire la jointure sur les colonnes id de A et aid de
B

SELECT * FROM A LEFT JOIN B ON A.id = B.aid

Un exemple
Faire la jointure gauche sur les relations cours et eval et sélectionnez les colonnes
titre, etu_id et note (sur cid=cours_id)

SELECT titre, etu_id, note FROM cours
LEFT JOIN eval ON cid=cours_id

titre etu_id note
Bases de données avancées 1 18
Mathématiques 1 0
Anglais 1 15
Python NULL NULL

62/74

Structured Query Language (SQL) : LEFT JOIN

Différentes syntaxes equivalents
Soit A et B deux relations, on souhaite faire la jointure sur les colonnes id de A et aid de
B

SELECT * FROM A LEFT JOIN B ON A.id = B.aid

Un exemple
Faire la jointure gauche sur les relations cours et eval et sélectionnez les colonnes
titre, etu_id et note (sur cid=cours_id)

SELECT titre, etu_id, note FROM cours
LEFT JOIN eval ON cid=cours_id

titre etu_id note
Bases de données avancées 1 18
Mathématiques 1 0
Anglais 1 15
Python NULL NULL

62/74

Structured Query Language (SQL) : Exercices

• Etu(eid: serial, nom: str, prenom: str, mail: str)
• Cours(cid: serial, titre: str)
• Eval(nid: serial, etu_id: int, cours_id: int, note: float)

Obtenir la liste des prénoms et des noms
des étudiants n’ayant pas de notes

Retrouver toutes les notes manquantes en
retournant le nom, le prénom de et le cours

63/74

Structured Query Language (SQL) : Exercices

• Etu(eid: serial, nom: str, prenom: str, mail: str)
• Cours(cid: serial, titre: str)
• Eval(nid: serial, etu_id: int, cours_id: int, note: float)

Obtenir la liste des prénoms et des noms
des étudiants n’ayant pas de notes

SELECT prenom, nom FROM etu AS E
LEFT JOIN eval AS N ON E.eid=N.etu_id
WHERE note IS NULL

Retrouver toutes les notes manquantes en
retournant le nom, le prénom de et le cours

63/74

Structured Query Language (SQL) : Exercices

• Etu(eid: serial, nom: str, prenom: str, mail: str)
• Cours(cid: serial, titre: str)
• Eval(nid: serial, etu_id: int, cours_id: int, note: float)

Obtenir la liste des prénoms et des noms
des étudiants n’ayant pas de notes

SELECT prenom, nom FROM etu AS E
LEFT JOIN eval AS N ON E.eid=N.etu_id
WHERE note IS NULL

Retrouver toutes les notes manquantes en
retournant le nom, le prénom de et le cours
et la note

SELECT prenom, nom, titre FROM etu E
CROSS JOIN cours C
LEFT JOIN eval N ON

(E.eid=N.etu_id AND N.cours_id=C.cid)
WHERE note IS NULL

63/74

Structured Query Language (SQL): Différentes jointures

INNER JOIN
A B

LEFT JOIN
A B

RIGHT JOIN
A B

LEFT JOIN SANS B
A B

RIGHT JOIN SANS A
A B

64/74

Structured Query Language (SQL) : Jointure

SELECT * FROM cours, eval
WHERE etu.eid=eval.eid

eid prenom nom
→ 1 Agathe Zeblouse

2 Odile Huai
3 Jean Peuplu

−→

etu_id cours_id note
→ 1 2 0

1 1 18
1 3 15
2 1 5

65/74

Structured Query Language (SQL) : Jointure

SELECT * FROM cours, eval
WHERE etu.eid=eval.eid

eid prenom nom
→ 1 Agathe Zeblouse

2 Odile Huai
3 Jean Peuplu

−→

etu_id cours_id note
1 2 0

→ 1 1 18
1 3 15
2 1 5

65/74

Structured Query Language (SQL) : Jointure

SELECT * FROM cours, eval
WHERE etu.eid=eval.eid

eid prenom nom
→ 1 Agathe Zeblouse

2 Odile Huai
3 Jean Peuplu

−→

etu_id cours_id note
1 2 0
1 1 18

→ 1 3 15
2 1 5

65/74

Structured Query Language (SQL) : Jointure

SELECT * FROM cours, eval
WHERE etu.eid=eval.eid

eid prenom nom
→ 1 Agathe Zeblouse

2 Odile Huai
3 Jean Peuplu

−→

etu_id cours_id note
1 2 0
1 1 18
1 3 15

→ 2 1 5

65/74

Structured Query Language (SQL) : Jointure

SELECT * FROM cours, eval
WHERE etu.eid=eval.eid

eid prenom nom
1 Agathe Zeblouse

→ 2 Odile Huai
3 Jean Peuplu

−→

etu_id cours_id note
→ 1 2 0

1 1 18
1 3 15
2 1 5

65/74

Structured Query Language (SQL) : Jointure

SELECT * FROM cours, eval
WHERE etu.eid=eval.eid

eid prenom nom
→ 1 Agathe Zeblouse

2 Odile Huai
3 Jean Peuplu

−→

etu_id cours_id note
1 2 0

→ 1 1 18
1 3 15
2 1 5

65/74

Structured Query Language (SQL) : Jointure

Avec l’algorithme précédent

Combien d’itérations ?

→ 3× 4 = 12

Si le nombre de n-uplets dans netu = 100 et neval = 1000
Combien d’itérations ?

100× 1.000 = 100.000

66/74

Structured Query Language (SQL) : Jointure

Avec l’algorithme précédent

Combien d’itérations ? → 3× 4 = 12

Si le nombre de n-uplets dans netu = 100 et neval = 1000
Combien d’itérations ?

100× 1.000 = 100.000

66/74

Structured Query Language (SQL) : Jointure

Avec l’algorithme précédent

Combien d’itérations ? → 3× 4 = 12

Si le nombre de n-uplets dans netu = 100 et neval = 1000
Combien d’itérations ?

100× 1.000 = 100.000

66/74

Structured Query Language (SQL) : Jointure

Avec l’algorithme précédent

Combien d’itérations ? → 3× 4 = 12

Si le nombre de n-uplets dans netu = 100 et neval = 1000
Combien d’itérations ?

100× 1.000 = 100.000

66/74

Structured Query Language (SQL) : Jointure

Si les différentes relations étaient
des tableaux (dans un langage
quelconques) comment
implémenter la requête :
SELECT * FROM cours, eval, etu

WHERE etu.eid=eval.eid
AND cours.cid=eval.cid

→ Boucles imbriquées

Algorithm 1 JOIN
Require: cours, eval, etu
resultat← []

for c ∈ cours do
for n ∈ eval do

for e ∈ etu do
if c.cid = n.cid and e.eid = n.eid then

resultat← resultat ∪ (c, n, d)
end if

end for
end for

end for

67/74

Structured Query Language (SQL) : Jointure

Si les différentes relations étaient
des tableaux (dans un langage
quelconques) comment
implémenter la requête :

SELECT * FROM cours, eval, etu
WHERE etu.eid=eval.eid
AND cours.cid=eval.cid

Combien d’itérations ?

Algorithm 2 JOIN
Require: cours, eval, etu
resultat← []

for c ∈ cours do
for n ∈ eval do

for e ∈ etu do
if c.cid = n.cid and e.eid = n.eid then

resultat← resultat ∪ (c, n, d)
end if

end for
end for

end for

67/74

Structured Query Language (SQL) : Jointure

Si les différentes relations étaient
des tableaux (dans un langage
quelconques) comment
implémenter la requête :

SELECT * FROM cours, eval, etu
WHERE etu.eid=eval.eid
AND cours.cid=eval.cid

Combien d’itérations ?

ncours × neval × netu

Algorithm 3 JOIN
Require: cours, eval, etu
resultat← []

for c ∈ cours do
for n ∈ eval do

for e ∈ etu do
if c.cid = n.cid and e.eid = n.eid then

resultat← resultat ∪ (c, n, d)
end if

end for
end for

end for

67/74

Structured Query Language (SQL) : Jointure

Si les différentes relations étaient
des tableaux (dans un langage
quelconques) comment
implémenter la requête :

SELECT * FROM cours, eval,
etu

WHERE etu.eid=eval.eid
AND cours.cid=eval.cid

Combien d’itérations ?

ncours × neval × netu

Algorithm 4 JOIN
Require: cours, eval, etu
resultat← []

for c ∈ cours do
for n ∈ eval do

for e ∈ etu do
if c.cid = n.cid and e.eid = n.eid then

resultat← resultat ∪ (c, n, d)
end if

end for
end for

end for

Il faut optimiser (Partie Optimisation)

67/74

Structured Query Language (SQL) : L’instruction UDPATE

La mise à jour
On peut mettre à jour un enregistrement dans la table, en utilisant l’instruction UPDATE:

UPDATE nom_table SET nom_colonne_1=a nom_colonne_2=b WHERE condition;

Modifier la note en mathématiques (cours_id=2) de Agathe Zeblouse (etu_id=1) à 20

UPDATE Eval SET note = 20 WHERE etu_id=1 AND cours_id = 2

On peut aussi utiliser des SELECT pour retrouver l’enregistrement

UPDATE Eval SET note = 20
WHERE etu_id=(SELECT eid FROM etu WHERE nom='Zeblouse' AND prenom='Agathe')
AND cours_id = (SELECT cid FROM cours WHERE titre='Mathématiques')

68/74

Structured Query Language (SQL) : L’instruction UDPATE

La mise à jour
On peut mettre à jour un enregistrement dans la table, en utilisant l’instruction UPDATE:

UPDATE nom_table SET nom_colonne_1=a nom_colonne_2=b WHERE condition;

Modifier la note en mathématiques (cours_id=2) de Agathe Zeblouse (etu_id=1) à 20

UPDATE Eval SET note = 20 WHERE etu_id=1 AND cours_id = 2

On peut aussi utiliser des SELECT pour retrouver l’enregistrement

UPDATE Eval SET note = 20
WHERE etu_id=(SELECT eid FROM etu WHERE nom='Zeblouse' AND prenom='Agathe')
AND cours_id = (SELECT cid FROM cours WHERE titre='Mathématiques')

68/74

Structured Query Language (SQL) : L’instruction UDPATE

Mettre à jour plusieurs enregistrements (exemple)

On peut mettre a jour plusieurs enregistrements en utilisant les valeurs des lignes
retrouvées
Exemple : Enlever deux points à tous les étudiants

UPDATE Eval SET note = note-2;

nom prenom cours note
Peuplu Jean Mathématiques 15
Peuplu Jean Anglais 6
Zeblouse Agathe Bases de données ... 18
Zeblouse Agathe Mathématiques 20

→

nom prenom cours note
Peuplu Jean Mathématiques 13
Peuplu Jean Anglais 4
Zeblouse Agathe Bases de données ... 16
Zeblouse Agathe Mathématiques 18

69/74

Structured Query Language (SQL) : L’instruction UDPATE

Mettre à jour plusieurs enregistrements (exemple)

On peut mettre a jour plusieurs enregistrements en utilisant les valeurs des lignes
retrouvées
Exemple : Enlever deux points à tous les étudiants
UPDATE Eval SET note = note-2;

nom prenom cours note
Peuplu Jean Mathématiques 15
Peuplu Jean Anglais 6
Zeblouse Agathe Bases de données ... 18
Zeblouse Agathe Mathématiques 20

→

nom prenom cours note
Peuplu Jean Mathématiques 13
Peuplu Jean Anglais 4
Zeblouse Agathe Bases de données ... 16
Zeblouse Agathe Mathématiques 18

69/74

Structured Query Language (SQL) : L’instruction UDPATE

Pour aller plus loin !

Il existe d’autre syntaxe fonctionnalités

• Site de PostgreSQLhttps://docs.postgresql.fr/9.6/sql-update.html
• W3Schools https://www.w3schools.com/sql/sql_update.asp

70/74

https://docs.postgresql.fr/9.6/sql-update.html
https://www.w3schools.com/sql/sql_update.asp

Structured Query Language (SQL) : L’instruction DELETE

Suppression d’un enregistrement
On peut supprimer un enregistrement dans la table, en utilisant l’instruction DELETE:

DELETE FROM nom_table WHERE condition;

Exemple : Supprimer les notes du cours Mathématiques

DELETE FROM eval WHERE cours_id = (SELECT cid WHERE titre='Mathématiques')

71/74

Structured Query Language (SQL) : L’instruction DELETE

Suppression d’un enregistrement
On peut supprimer un enregistrement dans la table, en utilisant l’instruction DELETE:

DELETE FROM nom_table WHERE condition;

Exemple : Supprimer les notes du cours Mathématiques

DELETE FROM eval WHERE cours_id = (SELECT cid WHERE titre='Mathématiques')

71/74

Informations supplémentaires

Structured Query Language (SQL) : Autre (pour le TP)

SELECT DISTINCT
L’instruction SELECT DISTINCT est utilisée pour renvoyer uniquement les enregistrements
distincts.

SELECT DISTINCT

STRING_AGG
La fonction STRING_AGG concatène des chaînes de caractères séparées par un séparateur
spécifié.

Ressources

• Documentation postgreSQL
https://www.postgresql.org/docs/16/index.html

• W3School https://www.w3schools.com/sql

72/74

https://www.postgresql.org/docs/16/index.html
https://www.w3schools.com/sql

Conclusion

Un petit TP à rendre

Objectifs

• Créer une base de données
• Interroger une base de données

Support sur https://thomas-gerald.fr/BDO/index.html

73/74

https://thomas-gerald.fr/BDO/index.html

Dans la suite

Ce qui a été vue

• Initiation au langage SQL
• Les opérations sur les bases de données relationnelles avec SQL

Comment ces opérations sont implémentées dans les SGBDs ?
Comment garantir l’efficacité des opérations ? → Optimisation des SGBDs

74/74

	Le Language de Définition des Données (LDD)
	Le Language de Manipulation des Données (LDD)
	Informations supplémentaires
	Conclusion

