
Introduction to the tokenization

Thomas Gerald
January 16, 2026

Ressources (for exercices and lecture slides)

https://thomas-gerald.fr/TMC

1/25

https://thomas-gerald.fr/TMC

Using subword units

Tokenization: Splitting into subwords units

• Splitting words into subwords
• Subwords with ”semantic” meaning
• Suffix/prefix split

How to ?

• Use a database (dictionary)
• Do it automatically ? → Statistical tokenization

ing

ing

ing

inglearn

be

eat

sleep

2/25

Tokenization: Splitting into subwords units

anti

anti

anti

anti

oxydant

biotic

viral

venoms

1574 words that
start with "anti" Automatic tokenizer ?

Consider a text corpus

• common words are frequent
• common subwords are frequent

→ Algorithms based on the frequency of subwords ?

A naive algorithm:

1. Splitting words in all possible subwords
2. Ordering subwords by frequency
3. Add to the vocabulary the top-k most frequent subwords

3/25

Tokenization: BPE Algorithm

The Byte Pair Encoding Algorithm

Learn merging rules from characters to
subwords

bio

b i

bi o

→ “A new algorithm for data compression”, P. Gage, C user Journal, 1994

→ “Neural Machine Translation of Rare Words with Subword Units”, R. Seenrich et al., ACL 2016

4/25

Tokenization: BPE Algorithm

Algorithm 1 BPE Tokenization
1: Input: Word w; Vocabulary V ; Merge rulesM
2: Output: Tokenized wordW

3: W ← split w into symbols ∈ V
4: for (p1, p2, v) ∈M do
5: i← 0
6: while i < len(W) do
7: if Wi = p1 ∧Wi+1 = p2 then
8: Wi ← v
9: Wi+1:len(W) ← Wi+2:len(W)

10: else
11: i← i+ 1
12: end if
13: end while
14: end for
15: returnW

t-i

a-n

a.n.t.i.o.x.y.d.a.n.t

an-ti

bi-o

a.n.ti.o.x.y.d.a.n.t

an.ti.o.x.y.d.an.t

an.ti.o.x.y.d.an.t

Merge rules

5/25

Tokenization: BPE Algorithm

Algorithm 1 BPE Tokenization
1: Input: Word w; Vocabulary V ; Merge rulesM
2: Output: Tokenized wordW
3: W ← split w into symbols ∈ V

4: for (p1, p2, v) ∈M do
5: i← 0
6: while i < len(W) do
7: if Wi = p1 ∧Wi+1 = p2 then
8: Wi ← v
9: Wi+1:len(W) ← Wi+2:len(W)

10: else
11: i← i+ 1
12: end if
13: end while
14: end for
15: returnW

t-i

a-n

a.n.t.i.o.x.y.d.a.n.t

an-ti

bi-o

a.n.ti.o.x.y.d.a.n.t

an.ti.o.x.y.d.an.t

an.ti.o.x.y.d.an.t

Merge rules

5/25

Tokenization: BPE Algorithm

Algorithm 1 BPE Tokenization
1: Input: Word w; Vocabulary V ; Merge rulesM
2: Output: Tokenized wordW
3: W ← split w into symbols ∈ V
4: for (p1, p2, v) ∈M do

5: i← 0
6: while i < len(W) do
7: if Wi = p1 ∧Wi+1 = p2 then
8: Wi ← v
9: Wi+1:len(W) ← Wi+2:len(W)

10: else
11: i← i+ 1
12: end if
13: end while
14: end for
15: returnW

t-i

a-n

a.n.t.i.o.x.y.d.a.n.t

an-ti

bi-o

a.n.ti.o.x.y.d.a.n.t

an.ti.o.x.y.d.an.t

an.ti.o.x.y.d.an.t

Merge rules

5/25

Tokenization: BPE Algorithm

Algorithm 1 BPE Tokenization
1: Input: Word w; Vocabulary V ; Merge rulesM
2: Output: Tokenized wordW
3: W ← split w into symbols ∈ V
4: for (p1, p2, v) ∈M do
5: i← 0

6: while i < len(W) do
7: if Wi = p1 ∧Wi+1 = p2 then
8: Wi ← v
9: Wi+1:len(W) ← Wi+2:len(W)

10: else
11: i← i+ 1
12: end if
13: end while
14: end for
15: returnW

t-i

a-n

a.n.t.i.o.x.y.d.a.n.t

an-ti

bi-o

a.n.ti.o.x.y.d.a.n.t

an.ti.o.x.y.d.an.t

an.ti.o.x.y.d.an.t

Merge rules

5/25

Tokenization: BPE Algorithm

Algorithm 1 BPE Tokenization
1: Input: Word w; Vocabulary V ; Merge rulesM
2: Output: Tokenized wordW
3: W ← split w into symbols ∈ V
4: for (p1, p2, v) ∈M do
5: i← 0
6: while i < len(W) do

7: if Wi = p1 ∧Wi+1 = p2 then
8: Wi ← v
9: Wi+1:len(W) ← Wi+2:len(W)

10: else
11: i← i+ 1
12: end if
13: end while
14: end for
15: returnW

t-i

a-n

a.n.t.i.o.x.y.d.a.n.t

an-ti

bi-o

a.n.ti.o.x.y.d.a.n.t

an.ti.o.x.y.d.an.t

an.ti.o.x.y.d.an.t

Merge rules

5/25

Tokenization: BPE Algorithm

Algorithm 1 BPE Tokenization
1: Input: Word w; Vocabulary V ; Merge rulesM
2: Output: Tokenized wordW
3: W ← split w into symbols ∈ V
4: for (p1, p2, v) ∈M do
5: i← 0
6: while i < len(W) do
7: if Wi = p1 ∧Wi+1 = p2 then

8: Wi ← v
9: Wi+1:len(W) ← Wi+2:len(W)

10: else
11: i← i+ 1
12: end if
13: end while
14: end for
15: returnW

t-i

a-n

a.n.t.i.o.x.y.d.a.n.t

an-ti

bi-o

a.n.ti.o.x.y.d.a.n.t

an.ti.o.x.y.d.an.t

an.ti.o.x.y.d.an.t

Merge rules

5/25

Tokenization: BPE Algorithm

Algorithm 1 BPE Tokenization
1: Input: Word w; Vocabulary V ; Merge rulesM
2: Output: Tokenized wordW
3: W ← split w into symbols ∈ V
4: for (p1, p2, v) ∈M do
5: i← 0
6: while i < len(W) do
7: if Wi = p1 ∧Wi+1 = p2 then
8: Wi ← v
9: Wi+1:len(W) ← Wi+2:len(W)

10: else
11: i← i+ 1
12: end if
13: end while
14: end for
15: returnW

t-i

a-n

a.n.t.i.o.x.y.d.a.n.t

an-ti

bi-o

a.n.ti.o.x.y.d.a.n.t

an.ti.o.x.y.d.an.t

an.ti.o.x.y.d.an.t

Merge rules

5/25

Tokenization: BPE Algorithm

Algorithm 1 BPE Tokenization
1: Input: Word w; Vocabulary V ; Merge rulesM
2: Output: Tokenized wordW
3: W ← split w into symbols ∈ V
4: for (p1, p2, v) ∈M do
5: i← 0
6: while i < len(W) do
7: if Wi = p1 ∧Wi+1 = p2 then
8: Wi ← v
9: Wi+1:len(W) ← Wi+2:len(W)

10: else
11: i← i+ 1
12: end if
13: end while
14: end for

15: returnW

t-i

a-n

a.n.t.i.o.x.y.d.a.n.t

an-ti

bi-o

a.n.ti.o.x.y.d.a.n.t

an.ti.o.x.y.d.an.t

an.ti.o.x.y.d.an.t

Merge rules

5/25

Tokenization: BPE Algorithm

Algorithm 1 BPE Tokenization
1: Input: Word w; Vocabulary V ; Merge rulesM
2: Output: Tokenized wordW
3: W ← split w into symbols ∈ V
4: for (p1, p2, v) ∈M do
5: i← 0
6: while i < len(W) do
7: if Wi = p1 ∧Wi+1 = p2 then
8: Wi ← v
9: Wi+1:len(W) ← Wi+2:len(W)

10: else
11: i← i+ 1
12: end if
13: end while
14: end for
15: returnW

t-i

a-n

a.n.t.i.o.x.y.d.a.n.t

an-ti

bi-o

a.n.ti.o.x.y.d.a.n.t

an.ti.o.x.y.d.an.t

an.ti.o.x.y.d.an.t

Merge rules

5/25

Tokenization: BPE Algorithm

Vocabulary→ A,B . . . Z,a,b . . . z

Find the most frequent couple of tokens
Words in the text

W Occ
a.n.t.i.v.i.r.a.l × 2

a.n.t.i.o.x.i.d.a.n.t × 1
a.n.t.i.b.i.o.t.i.c × 4

b.i.o.l.o.g.i.c × 6
a.n × 3

Number of couple occurences
Tuple Occ
t.i 2+ 1+ 8+ 0+ 0 11
i.o 0+ 1+ 4+ 6+ 0 11
a.n 2+ 1+ 4+ 0+ 3 10
b.i 0+ 0+ 4+ 6+ 0 10
i.c 0+ 0+ 4+ 6+ 0 10
n.t 2+ 2+ 4+ 0+ 0 8

...
...

...

6/25

Tokenization: BPE Algorithm

Vocabulary→ A,B . . . Z,a,b . . . z, ti

Find the most frequent couple of tokens
Words in the text

W Occ
a.n.ti.v.i.r.a.l × 2

a.n.ti.o.x.i.d.a.n.t × 1
a.n.ti.b.i.o.ti.c × 4

b.i.o.l.o.g.i.c × 6
a.n × 3

Number of couple occurences
Tuple Occ
a.n 2+ 1+ 4+ 0+ 3 10
b.i 0+ 0+ 4+ 6+ 0 10
i.o 0+ 0+ 4+ 6+ 0 10

n.ti 2+ 1+ 4+ 0+ 0 7
i.c 0+ 0+ 0+ 6+ 0 6

...
...

...

7/25

Tokenization: BPE Algorithm

Vocabulary→ A,B . . . Z,a,b . . . z, ti,an

Find the most frequent couple of tokens
Words in the text

W Occ
an.ti.v.i.r.a.l × 2

an.ti.o.x.i.d.an.t × 1
an.ti.b.i.o.ti.c × 4
b.i.o.l.o.g.i.c × 6

an × 3

Number of couple occurences
Tuple Occ
b.i 0+ 0+ 4+ 6+ 0 10
i.o 0+ 0+ 4+ 6+ 0 10

an.ti 2+ 2+ 4+ 0+ 0 7
texttti.c 0+ 0+ 0+ 6+ 0 6

...
...

...

8/25

Tokenization: BPE Algorithm

Vocabulary→ A,B . . . Z,a,b . . . z, ti,an,bi

Find the most frequent couple of tokens
Words in the text

W Occ
an.ti.v.i.r.a.l × 2

an.ti.o.x.i.d.an.t × 1
an.ti.bi.o.ti.c × 4
bi.o.l.o.g.i.c × 6

an × 3

Number of couple occurences
Tuple Occ
bi.o 0+ 0+ 4+ 6+ 0 10

an.ti 2+ 2+ 4+ 0+ 0 7
i.c 0+ 0+ 0+ 6+ 0 6

...
...

...

9/25

Tokenization: BPE Algorithm

Vocabulary→ A,B . . . Z,a,b . . . z, ti,an,bi,bio

Find the most frequent couple of tokens
Words in the text

W Occ
an.ti.v.i.r.a.l × 2

an.ti.o.x.i.d.an.t × 1
an.ti.bio.ti.c × 4
bio.l.o.g.i.c × 6

an × 3

Number of couple occurences
Tuple Occ
an.ti 2+ 2+ 4+ 0+ 0 7

i.c 0+ 0+ 0+ 6+ 0 6
...

...
...

10/25

Tokenization: BPE Algorithm

Vocabulary→ A,B . . . Z,a,b . . . z, ti,an,bi,bio,anti

Find the most frequent couple of tokens
Words in the text

W Occ
an.ti.v.i.r.a.l × 2

an.ti.o.x.i.d.an.t × 1
an.ti.bio.ti.c × 4
bio.l.o.g.i.c × 6

an × 3

Number of couple occurences
Tuple Occ
an.ti 2+ 2+ 4+ 0+ 0 7

i.c 0+ 0+ 0+ 6+ 0 6
...

...
...

11/25

Tokenization: BPE Algorithm

Vocabulary→ A,B . . . Z,a,b . . . z

Find the most frequent couple of tokens
Words in the text

W Occ
anti.v.i.r.a.l × 2

anti.o.x.i.d.an.t × 1
anti.bio.ti.c × 4
bio.l.o.g.i.c × 6

an × 3

Number of couple occurences
Tuple Occ
i.c 0+ 0+ 0+ 6+ 0 6

...
...

...

Etc....

12/25

Tokenization: BPE Algorithm

Principle:

Initialize vocabulary with characters

1. Tokenize the text (with current rules)
2. Finding tokens that appears the most
consecutively

3. Add a merge rule between the two
tokens

4. Repeat the procedure

Algorithm 2 Training BPE (big picture)
1: Input: Corpus C; Vocabulary V ; size S
2: Output: V,M

3: W ← tokenize(C)
4: M← ∅
5: while V < S do
6: F ← compute_pairs_freq(W)

7: P← best_pairs(F)
8: V ← V ∪ (P0.P1)
9: m← (P0, P1, {j|Vj = P0.P1})
10: M←M∪ {m}
11: W ← merge_pair(m,W)

12: end while
13: return V,M

13/25

Tokenization: BPE Algorithm

Principle:

Initialize vocabulary with characters

1. Tokenize the text (with current rules)
2. Finding tokens that appears the most
consecutively

3. Add a merge rule between the two
tokens

4. Repeat the procedure

Algorithm 2 Training BPE (big picture)
1: Input: Corpus C; Vocabulary V ; size S
2: Output: V,M
3: W ← tokenize(C)
4: M← ∅

5: while V < S do
6: F ← compute_pairs_freq(W)

7: P← best_pairs(F)
8: V ← V ∪ (P0.P1)
9: m← (P0, P1, {j|Vj = P0.P1})
10: M←M∪ {m}
11: W ← merge_pair(m,W)

12: end while
13: return V,M

13/25

Tokenization: BPE Algorithm

Principle:

Initialize vocabulary with characters

1. Tokenize the text (with current rules)
2. Finding tokens that appears the most
consecutively

3. Add a merge rule between the two
tokens

4. Repeat the procedure

Algorithm 2 Training BPE (big picture)
1: Input: Corpus C; Vocabulary V ; size S
2: Output: V,M
3: W ← tokenize(C)
4: M← ∅
5: while V < S do

6: F ← compute_pairs_freq(W)

7: P← best_pairs(F)
8: V ← V ∪ (P0.P1)
9: m← (P0, P1, {j|Vj = P0.P1})
10: M←M∪ {m}
11: W ← merge_pair(m,W)

12: end while
13: return V,M

13/25

Tokenization: BPE Algorithm

Principle:

Initialize vocabulary with characters

1. Tokenize the text (with current rules)
2. Finding tokens that appears the most
consecutively

3. Add a merge rule between the two
tokens

4. Repeat the procedure

Algorithm 2 Training BPE (big picture)
1: Input: Corpus C; Vocabulary V ; size S
2: Output: V,M
3: W ← tokenize(C)
4: M← ∅
5: while V < S do
6: F ← compute_pairs_freq(W)

7: P← best_pairs(F)

8: V ← V ∪ (P0.P1)
9: m← (P0, P1, {j|Vj = P0.P1})
10: M←M∪ {m}
11: W ← merge_pair(m,W)

12: end while
13: return V,M

13/25

Tokenization: BPE Algorithm

Principle:

Initialize vocabulary with characters

1. Tokenize the text (with current rules)
2. Finding tokens that appears the most
consecutively

3. Add a merge rule between the two
tokens

4. Repeat the procedure

Algorithm 2 Training BPE (big picture)
1: Input: Corpus C; Vocabulary V ; size S
2: Output: V,M
3: W ← tokenize(C)
4: M← ∅
5: while V < S do
6: F ← compute_pairs_freq(W)

7: P← best_pairs(F)
8: V ← V ∪ (P0.P1)
9: m← (P0, P1, {j|Vj = P0.P1})
10: M←M∪ {m}

11: W ← merge_pair(m,W)

12: end while
13: return V,M

13/25

Tokenization: BPE Algorithm

Principle:

Initialize vocabulary with characters

1. Tokenize the text (with current rules)
2. Finding tokens that appears the most
consecutively

3. Add a merge rule between the two
tokens

4. Repeat the procedure

Algorithm 2 Training BPE (big picture)
1: Input: Corpus C; Vocabulary V ; size S
2: Output: V,M
3: W ← tokenize(C)
4: M← ∅
5: while V < S do
6: F ← compute_pairs_freq(W)

7: P← best_pairs(F)
8: V ← V ∪ (P0.P1)
9: m← (P0, P1, {j|Vj = P0.P1})
10: M←M∪ {m}
11: W ← merge_pair(m,W)

12: end while

13: return V,M

13/25

Tokenization: BPE Algorithm

Principle:

Initialize vocabulary with characters

1. Tokenize the text (with current rules)
2. Finding tokens that appears the most
consecutively

3. Add a merge rule between the two
tokens

4. Repeat the procedure

Algorithm 2 Training BPE (big picture)
1: Input: Corpus C; Vocabulary V ; size S
2: Output: V,M
3: W ← tokenize(C)
4: M← ∅
5: while V < S do
6: F ← compute_pairs_freq(W)

7: P← best_pairs(F)
8: V ← V ∪ (P0.P1)
9: m← (P0, P1, {j|Vj = P0.P1})
10: M←M∪ {m}
11: W ← merge_pair(m,W)

12: end while
13: return V,M

13/25

Tokenization: BPE Algorithm

→ Used in a lot of transformer models

Add & norm

Multi-head
self-attention

Feed forward

Add & norm

Input embedding

Encoder block
Repeated N times

Positional
Encoding

Add & norm

Multi-head
self-attention

Feed forward

Add & norm

Linear

Softmax

Add & norm

Multi-head
cross-attention

Decoder block
Repeated N times

+

Output embedding

Output
Probabilities

Positional
Encoding+

What are the models ?

• GPT, GPT2 (on byte level)
• BART
• RoBERTa
• . . .

14/25

Tokenization: BPE Algorithm

→ Used in a lot of transformer models

Add & norm

Multi-head
self-attention

Feed forward

Add & norm

Input embedding

Encoder block
Repeated N times

Positional
Encoding

Add & norm

Multi-head
self-attention

Feed forward

Add & norm

Linear

Softmax

Add & norm

Multi-head
cross-attention

Decoder block
Repeated N times

+

Output embedding

Output
Probabilities

Positional
Encoding+

What are the models ?

• GPT, GPT2 (on byte level)
• BART
• RoBERTa
• . . .

14/25

Tokenization: BPE Algorithm

When to stop learning merging rules?

• Threshold on the size of the vocabulary
• Empirical size (depending on the languages/tasks/models)

→ 32 000, 64 000 mostly (threshold between size and token expressivness)

15/25

Tokenization: BPE Algorithm

When to stop learning merging rules?

• Threshold on the size of the vocabulary

• Empirical size (depending on the languages/tasks/models)

→ 32 000, 64 000 mostly (threshold between size and token expressivness)

15/25

Tokenization: BPE Algorithm

When to stop learning merging rules?

• Threshold on the size of the vocabulary
• Empirical size (depending on the languages/tasks/models)

→ 32 000, 64 000 mostly (threshold between size and token expressivness)

15/25

Tokenization: BPE Algorithm

When to stop learning merging rules?

• Threshold on the size of the vocabulary
• Empirical size (depending on the languages/tasks/models)

→ 32 000, 64 000 mostly (threshold between size and token expressivness)

15/25

Tokenization: Wordpiece Algorithm

Principle (similar to BPE)

• Intialize vocabulary with characters
• Compute for each token pairs t1, t2 score(t1, t2) = p(t1,t2)

p(t1)×p(t2)

• Add a merge rule for couple of tokens with highest score

When to stop ?

• Threshold on the size of the vocabulary
• Threshold on the frequency

What are the models?
• BERT
• Most of transformer based on BERT

16/25

Tokenization: Unigrams

Unigram

• Different tokenization
• From large collection of subwords,
reduce the vocabulary

→ “Subword Regularization: Improving Neural Network Translation Models with Multiple Subword Candidates”,

Taku Kudo, ACL 2018

Hypothesis : Training with different tokenization would help (regularization)

17/25

Tokenization: Unigrams

Unigram tokenization

Considering an input sentence X and S(X) all the possible decomposition of X into
subwords :

• The probability of the sequence x = x1, x2, . . . , xm ∈ S(x) is given by P(x) =
∏m

i=0 p(xi)
• p(xi) is the probability of a subword in the corpus

For the sequence X the segmentation is

x∗ = argmax
x∈S(X)

P(x)

→ It is also possible to sample x ∼ S(x)

18/25

Tokenization: Unigrams

Building vocabulary

1. Start from a large vocabulary
2. Compute how removing tokens affect the likelihood over the datasets
3. Remove tokens that affect (drop in likelihood) the most the model

19/25

Tokenization: Unigrams

Unigrams summary

• Different segmentation possible for an
example

• Sampling most likely split

Do models use this appproach ?
• T5
• . . .

� Same sentence can have a different
tokenization

20/25

Tokenization: Lossless Tokenization

Example :

Let consider the following
vocabulary :

Voc id
the 1
cat 2
is 3
sit 4
t 5
ing 6
on 7

couch 8

What is the tokenization of (considering BPE):
“The cat is sitting on the couch”

↓

the-cat-is-sit-t-ing-on-the-couch ([1, 2, 3, 4, 5, 6, 7, 1, 8])
How to detokenize ?

↓

“thecatissittingonthecouch”
� We loss some information ont the space

21/25

Tokenization: Lossless Tokenization

Detokenization ?

1. Add a special character for inner-word
tokens
→ cannot encode multiple space

2. Add a special token for space

With wordpiece implementation

→ Using the token “##token” meaning it is
an “inside word” token

With sentencepiece implementation

→ Using the token “_” for space char

22/25

Tokenization: Some remaining issues

anti

anti

anti

anti

oxydant

biotic

viral

venoms

1574 words that
start with "anti"

anti cs

Not always meaningfull

• Tokens are not always relevant
• Mostly depends on the size of the vocabulary or the training corpus

23/25

Tokenization: Some remaining issues

anti

anti

anti

anti

oxydant

biotic

viral

venoms

1574 words that
start with "anti"

anti cs

Not always meaningfull

• Tokens are not always relevant

• Mostly depends on the size of the vocabulary or the training corpus

23/25

Tokenization: Some remaining issues

anti

anti

anti

anti

oxydant

biotic

viral

venoms

1574 words that
start with "anti"

anti cs

Not always meaningfull

• Tokens are not always relevant
• Mostly depends on the size of the vocabulary or the training corpus

23/25

Tokenization: Conclusion

Conclusion:

• Principle and problems of tokenization
• Different approaches (BPE, Wordpiece, Unigram)

24/25

Tokenization: Conclusion

Conclusion:

• Principle and problems of tokenization
• Different approaches (BPE, Wordpiece, Unigram)

24/25

Exercise ?

• Implement a lemmatizer
• Implement the BPE algorithm

25/25

	Using subword units

