Introduction to the tokenization

Thomas Gerald
January 16, 2026

Ressources (for exercices and lecture slides)

https://thomas-gerald.fr/TMC

https://thomas-gerald.fr/TMC

Using subword units

Tokenization: Splitting into subwords units

- Splitting words into subwords mm
- Subwords with "semantic” meaning
- Suffix/prefix split °

How to ?

[

[
- Use a database (dictionary) mm
- Do it automatically ? — Statistical tokenization

Tokenization: Splitting into subwords units

words that

start with "anti"

Automatic tokenizer ?
Consider a text corpus
- common words are frequent
- common subwords are frequent
— Algorithms based on the frequency of subwords ?
A naive algorithm:
1. Splitting words in all possible subwords

2. Ordering subwords by frequency
3. Add to the vocabulary the top-k most frequent subwords

Tokenization: BPE Algorithm

The Byte Pair Encoding Algorithm

Learn merging rules from characters to
subwords

Neural Machine Translation of Rare Words with Subword Units

Rico Sennrich and Barry Haddow and Alexandra Birch
School of Informatics, University of Edinburgh
{rico.sennrich,a.birch}@ed.ac.uk,bhaddoweinf.ed.ac.uk

Abstract

Neural machine translation (NMT) mod-
els typically operate with a fixed vocabu-
lary, but translation is an open-vocabulary
problem. Previous work addresses the
translation of out-of-vocabulary words by
backing off to a dictionary. In this pa-
¢ introduce a simpler and more ef-
e approach, making the NMT model
capable of open-vocabulary translation by
encoding rare and unknown words as se-
quences of subword units. This is based on
the intuition that various word classes are

— “A new algorithm for data compression”, P. Gage, C user Journal, 1994
— “Neural Machine Translation of Rare Words with Subword Units” R. Seenrich et al.,, ACL 2016

lem, and especially for languages with produc-
tive word formation proc: ch as aggluti-
nation and compounding, translation models re-
quire mechanisms that go below the word level.
As an example, consider compounds such as the
German Abwasser|behandlungs|anlange *sewage
water treatment plant’, for which a segmented,
variable-length representation is intuitively more
appealing than encoding the word as a fixed-length
vector.

For word-level NMT models, the translation
of out-of-vocabulary words has been addressed
through a back-off to a dictionary look-up (Jean et
al., 2015; Luong et al., 2015b). We note that such
techniques make assumptions that often do not
hold true in practice. For instance, there is not al-

Tokenization: BPE Algorithm

Algorithm 1 BPE Tokenization

1. Input: Word w; Vocabulary V; Merge rules M
2: Output: Tokenized word W

Tokenization: BPE Algorithm

Algorithm 1 BPE Tokenization
1. Input: Word w; Vocabulary V; Merge rules M
2: Output: Tokenized word W
3: W « split w into symbols € V

Tokenization: BPE Algorithm

Algorithm 1 BPE Tokenization

1. Input: Word w; Vocabulary V; Merge rules M
2: Output: Tokenized word W

3: W « split w into symbols € V

4: for (p1,p2,v) € M do

Tokenization: BPE Algorithm

Algorithm 1 BPE Tokenization

1. Input: Word w; Vocabulary V; Merge rules M
2: Output: Tokenized word W

3: W « split w into symbols € V

4: for (p1,p2,v) € M do

5: i+ 0

Tokenization: BPE Algorithm

Algorithm 1 BPE Tokenization

1. Input: Word w; Vocabulary V; Merge rules M
2: Output: Tokenized word W
3: W « split w into symbols € V
4: for (p1,p2,v) € M do
5
6

i+ 0

while i < len(W) do

Tokenization: BPE Algorithm

Algorithm 1 BPE Tokenization

1. Input: Word w; Vocabulary V; Merge rules M
2: Output: Tokenized word W
3: W « split w into symbols € V
4: for (p1,p2,v) € M do
5
6
7

i+ 0

while i < len(W) do
if W; = p1 A Wiy = p; then

Tokenization: BPE Algorithm

Algorithm 1 BPE Tokenization
1. Input: Word w; Vocabulary V; Merge rules M
2: Output: Tokenized word W
3: W « split w into symbols € V
4: for (p1,p2,v) € M do
i+ 0
while i < len(W) do
if W; = p1 A Wiy = p; then
W; < v
Witaten(wy = Wisailen(w)

R A

Tokenization: BPE Algorithm

Algorithm 1 BPE Tokenization
1. Input: Word w; Vocabulary V; Merge rules M
2: Output: Tokenized word W
3: W « split w into symbols € V
4: for (p1,p2,v) € M do

5 i+ 0

6 while i < len(W) do

7 if W; = p1 A Wiy = p; then
8: W; < v

9: Witaten(wy = Wisailen(w)
10 else

11 i+ i+1

12: end if

13: end while

14: end for

Tokenization: BPE Algorithm

Algorithm 1 BPE Tokenization
1. Input: Word w; Vocabulary V; Merge rules M

2: Output: Tokenized word W
3: W « split w into symbols € V Merge rUIeS
4: for (p1,p2,v) € M do

5 (0 Bl EURCRITENT
6: while i < len(W) do

7 if Wi = p1 A Wiyq = py then [a-n | Lio.xyd. .t
8: Wi <—v

9 Witrtenwy <= Witaiten(w) mﬁ .0.x.y.d.an.t
10: else y

: i [bi-o] an.ti.o.x.y.d.an.t
12: end if ol

13: end while
14: end for

15: return W

Tokenization: BPE Algorithm

Vocabulary -+ A,B...Z,a,b...z

Words in the text Number of couple occurences
w Occ Tuple Occ
a.n.t.i.v.i.r.a.l x 2 t.i 241484040 11
a.n.t.i.o.x.i.d.a.n.t x 1 i.o 04+1+4+64+0 11
a.n.t.i.b.i.o.t.i.c x 4 a.n 24+144+0+3 10
b.i.o.l.0.g.i.c x 6 b.i 04+40+4+64+0 10
a.n x 3 i.c 0+0+4+6+0 10

n.t

2+2+4+0+0 8

Tokenization: BPE Algorithm

Vocabulary — A,B...Z,a,b...z ti

Words in the text Number of couple occurences
W Occ Tuple Occ
a.n.ti.v.i.r.a.l a.n 24+144+0+3 10
a.n.ti.o.x.i.d.a.n.t b.i 04+40+4+46+0 10
a.n.ti.b.i.o.ti.c i.o 04044+6+0 10
b.i.o.l.0.g.i.c n.ti 241444040 7
a.n i.c 0+04+0+6+0 6

X X X X X
w o~ N

Tokenization: BPE Algorithm

Vocabulary — A,B...Z,a,b...z ti,an

?

Words in the text Number of couple occurences
W Occ Tuple Occ
an.ti.v.i.r.a.l b.i 04+0+4+6+0 10
an.ti.o.x.i.d.an.t i.o 0+0+4+6+4+0 10
an.ti.b.i.0.ti.c an.ti 242444040 7

b.i.0.l.0.g8.1.c textttic 04+04+0+6+0 6
an

X X X X X
w o N

Tokenization: BPE Algorithm

Vocabulary — A,B...Z,a,b...z ti,an, bi

?

Words in the text Number of couple occurences
W Occ Tuple Occ
an.ti.v.i.r.a.l bi.o 0+0+4+6+0 10
an.ti.o.x.i.d.an.t an.ti 242444040 7

an.ti.bi.o.ti.c i.c 04+04+0+6+0 6
bi.o.l.o0.g.i.c

an

X X X X X
w o &~ N

Tokenization: BPE Algorithm

Vocabulary — A,B...Z,a,b...z ti,an, bi, bio

?

Words in the text Number of couple occurences
w Occ Tuple Occ
an.ti.v.i.r.a.l an.ti 242444040 7

an.ti.o.x.i.d.an.t i.c 040404640 6
an.ti.bio.ti.c . : :

bio.l.o0.g.i.c
an

X X X X X
w o &~ N

Tokenization: BPE Algorithm

Vocabulary — A,B...Z,a,b...z ti,an, bi,bio,anti

?

Words in the text Number of couple occurences
w Occ Tuple Occ
an.ti.v.i.r.a.l an.ti 242444040 7

an.ti.o.x.i.d.an.t i.c 040404640 6
an.ti.bio.ti.c . : :

bio.l.o0.g.i.c
an

X X X X X
w o &~ N

1/25

Tokenization: BPE Algorithm

Vocabulary -+ A,B...Z,a,b...z

Words in the text Number of couple occurences
W Occ Tuple Occ

anti.v.i.r.a.l i.c 0+04+04+6+0 6
anti.o.x.i.d.an.t
anti.bio.ti.c
bio.l.o0.g.i.c

an

X X X X X
w o B~ kN

Etc....

12/25

Tokenization: BPE Algorithm

Algorithm 2 Training BPE (big picture)
1. Input: Corpus C; Vocabulary V; size S
Initialize vocabulary with characters 2 Output: ¥, M

Principle:

1. Tokenize the text (with current rules)

2. Finding tokens that appears the most
consecutively

3. Add a merge rule between the two
tokens

4. Repeat the procedure

Tokenization: BPE Algorithm

o Algorithm 2 Training BPE (big picture)
Principle: 1: Input: Corpus C; Vocabulary V; size S

Initialize vocabulary with characters 2: Output: vV, M
3: W <« tokenize(C)

b M+

1. Tokenize the text (with current rules)

2. Finding tokens that appears the most
consecutively

3. Add a merge rule between the two
tokens

4. Repeat the procedure

Tokenization: BPE Algorithm

Algorithm 2 Training BPE (big picture)

Principle:

1. Input: Corpus C; Vocabulary V; size S
Initialize vocabulary with characters 2 Output: V, M
3: W « tokenize(C)
1. Tokenize the text (with current rules) hMD
5: while V < S do

2. Finding tokens that appears the most
consecutively

3. Add a merge rule between the two
tokens

4. Repeat the procedure

Tokenization: BPE Algorithm

Algorithm 2 Training BPE (big picture)

Principle:

1. Input: Corpus C; Vocabulary V; size S
Initialize vocabulary with characters 2 Output: vV, M
3: W <« tokenize(C)
1. Tokenize the text (with current rules) hMD
5: while V < S do
2. Finding tokens that appears the most 6: F « compute_pairs_freq(W)
consecutively 7. P < best_pairs(F)

3. Add a merge rule between the two
tokens

4. Repeat the procedure

13/25

Tokenization: BPE Algorithm

Algorithm 2 Training BPE (big picture)

Principle: 1: Input: Corpus C; Vocabulary V; size S
Initialize vocabulary with characters 2: Output: vV, M
3: W <« tokenize(C)
1. Tokenize the text (with current rules) M0
5: while V < Sdo
2. Finding tokens that appears the most 6: F « compute_pairs_freq(W)
consecutively 7: P < best_pairs(F)
8 V+—Vu (Po.P1)
3. Add a merge rule between the two 9 m« (Po,Pr, {jIV; = Po-P1})
tokens 10: M+« Mu{m}

4. Repeat the procedure

13/25

Tokenization: BPE Algorithm

Algorithm 2 Training BPE (big picture)

Principle: 1. Input: Corpus C; Vocabulary V; size S
Initialize vocabulary with characters 2 Output: vV, M
3: W <« tokenize(C)
1. Tokenize the text (with current rules) hMD
5: while V < S do
2. Finding tokens that appears the most 6: F « compute_pairs_freq(W)
consecutively 7. P < best_pairs(F)
8: V(—VU(P().P1)

3. Add a merge rule between the two

9: m%(Po,Ph{”V} :PO.PW})
tokens 10: M+« Mu{m}
1 W < merge_pair(m, W)
4. Repeat the procedure 12 end while

13/25

Tokenization: BPE Algorithm

Algorithm 2 Training BPE (big picture)

Principle: 1. Input: Corpus C; Vocabulary V; size S
Initialize vocabulary with characters 2 Output: vV, M
3: W <« tokenize(C)
1. Tokenize the text (with current rules) hMD
5: while V < S do
2. Finding tokens that appears the most 6: F « compute_pairs_freq(W)
consecutively 7. P < best_pairs(F)
8: V(—VU(P().P1)

3. Add a merge rule between the two

9: m%(Po,Ph{”V} :PO.PW})
tokens 10: M+« Mu{m}
1 W < merge_pair(m, W)
4. Repeat the procedure 12 end while
13: return YV, M

13/25

Tokenization: BPE Algorithm

— Used in a lot of transformer models

14/25

Tokenization: BPE Algorithm

— Used in a lot of transformer models

Output
Probabilities

Softmax

1
[“addenorm [What are the models ?

- GPT, GPT2 (on byte level)
e BART
Feed forward cross-attention e
Encoder block * RO B E RTa
~ Add&norm [

Multi-head Multi-head C ..
self-attention self-attention

j

L —%

Positional Positional
»: o O
Input embedding Output embedding|

Tokenization: BPE Algorithm

When to stop learning merging rules?

Tokenization: BPE Algorithm

When to stop learning merging rules?

- Threshold on the size of the vocabulary

Tokenization: BPE Algorithm

When to stop learning merging rules?
- Threshold on the size of the vocabulary
- Empirical size (depending on the languages/tasks/models)

Tokenization: BPE Algorithm

When to stop learning merging rules?
- Threshold on the size of the vocabulary
- Empirical size (depending on the languages/tasks/models)

— 32 000, 64 000 mostly (threshold between size and token expressivness)

Tokenization: Wordpiece Algorithm

Principle (similar to BPE)
- Intialize vocabulary with characters
- Compute for each token pairs tq, t; score(ty, t;) = %
- Add a merge rule for couple of tokens with highest score

When to stop ? What are the models?
- Threshold on the size of the vocabulary - BERT
- Threshold on the frequency - Most of transformer based on BERT

Tokenization: Unigrams

Subwords (-means spaces)

Vocabulary id sequence

Unigram _Hell/o/_world
. L _H/ello/_world
- Different tokenization He/llo/_world
- From large collection of subwords, /He/l/fo/-world
_H/el/l/o/ /world

13586 137 255

320 7363 255

579 10115 255

7 18085 356 356 137 255
320 585 356 137 7 12295

reduce the vocabulary

Table 1: Multiple subword sequences encoding

the same sentence “Hello World”

— “Subword Regularization: Improving Neural Network Translation Models with Multiple Subword Candidates”,

Taku Kudo, ACL 2018

Hypothesis : Training with different tokenization would help (regularization)

17/25

Tokenization: Unigrams

Unigram tokenization

Considering an input sentence X and S(X) all the possible decomposition of X into
subwords :

- The probability of the sequence x = X1, X2, ..., Xn € S(X) Is given by P(x) = H,m:o p(x)
- p(x;) is the probability of a subword in the corpus

For the sequence X the segmentation is
X* = arg max P(x)

xeS(X)

— Itis also possible to sample x ~ S(x)

Tokenization: Unigrams

Building vocabulary
1. Start from a large vocabulary
2. Compute how removing tokens affect the likelihood over the datasets
3. Remove tokens that affect (drop in likelihood) the most the model

Tokenization: Unigrams

. Do models use this appproach ?
Unigrams summary

- 15
- Different segmentation possible for an
example
- Sampling most likely split A Same sentence can have a different

tokenization

Tokenization: Lossless Tokenization

Example :

Let consider the following

vocabulary :

Voc

id

the
cat
is
sit
ing
on
couch

0 ~NO U WN

What is the tokenization of (considering BPE):
“The cat is sitting on the couch”

I

the-cat-is-sit-t-ing-on-the-couch ([1,2,3, 4,5,6,7,1, 8])
How to detokenize ?

“thecatissittingonthecouch”
A We loss some information ont the space

21/25

Tokenization: Lossless Tokenization

Detokenization ?

1. Add a special character for inner-word
tokens
— cannot encode multiple space

2. Add a special token for space

With wordpiece implementation

— Using the token “#+#token” meaning it is
an “inside word” token

With sentencepiece implementation

u n

— Using the token “_" for space char

22/25

Tokenization: Some remaining issues

J Not always meaningfull

i iral AN = [

words that

start with "anti"

Tokenization: Some remaining issues

J Not always meaningfull

i iral AN = [

words that

start with "anti"

- Tokens are not always relevant

Tokenization: Some remaining issues

J Not always meaningfull

- Tokens are not always relevant

words that

start with "anti"

- Mostly depends on the size of the vocabulary or the training corpus

Tokenization: Conclusion

Conclusion:
- Principle and problems of tokenization
- Different approaches (BPE, Wordpiece, Unigram)

24/25

Tokenization: Conclusion

Conclusion:
- Principle and problems of tokenization
- Different approaches (BPE, Wordpiece, Unigram)

24/25

Exercise ?

- Implement a lemmatizer

- Implement the BPE algorithm

	Using subword units

